Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Brain ; 145(7): 2541-2554, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35552371

RESUMO

Approximately 30% of elderly adults are cognitively unimpaired at time of death despite the presence of Alzheimer's disease neuropathology at autopsy. Studying individuals who are resilient to the cognitive consequences of Alzheimer's disease neuropathology may uncover novel therapeutic targets to treat Alzheimer's disease. It is well established that there are sex differences in response to Alzheimer's disease pathology, and growing evidence suggests that genetic factors may contribute to these differences. Taken together, we sought to elucidate sex-specific genetic drivers of resilience. We extended our recent large scale genomic analysis of resilience in which we harmonized cognitive data across four cohorts of cognitive ageing, in vivo amyloid PET across two cohorts, and autopsy measures of amyloid neuritic plaque burden across two cohorts. These data were leveraged to build robust, continuous resilience phenotypes. With these phenotypes, we performed sex-stratified [n (males) = 2093, n (females) = 2931] and sex-interaction [n (both sexes) = 5024] genome-wide association studies (GWAS), gene and pathway-based tests, and genetic correlation analyses to clarify the variants, genes and molecular pathways that relate to resilience in a sex-specific manner. Estimated among cognitively normal individuals of both sexes, resilience was 20-25% heritable, and when estimated in either sex among cognitively normal individuals, resilience was 15-44% heritable. In our GWAS, we identified a female-specific locus on chromosome 10 [rs827389, ß (females) = 0.08, P (females) = 5.76 × 10-09, ß (males) = -0.01, P(males) = 0.70, ß (interaction) = 0.09, P (interaction) = 1.01 × 10-04] in which the minor allele was associated with higher resilience scores among females. This locus is located within chromatin loops that interact with promoters of genes involved in RNA processing, including GATA3. Finally, our genetic correlation analyses revealed shared genetic architecture between resilience phenotypes and other complex traits, including a female-specific association with frontotemporal dementia and male-specific associations with heart rate variability traits. We also observed opposing associations between sexes for multiple sclerosis, such that more resilient females had a lower genetic susceptibility to multiple sclerosis, and more resilient males had a higher genetic susceptibility to multiple sclerosis. Overall, we identified sex differences in the genetic architecture of resilience, identified a female-specific resilience locus and highlighted numerous sex-specific molecular pathways that may underly resilience to Alzheimer's disease pathology. This study illustrates the need to conduct sex-aware genomic analyses to identify novel targets that are unidentified in sex-agnostic models. Our findings support the theory that the most successful treatment for an individual with Alzheimer's disease may be personalized based on their biological sex and genetic context.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Esclerose Múltipla , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Cognição , Disfunção Cognitiva/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Caracteres Sexuais
2.
Acta Neuropathol ; 144(1): 59-79, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35608697

RESUMO

Alzheimer's disease (AD) has been associated with cardiovascular and cerebrovascular risk factors (CVRFs) during middle age and later and is frequently accompanied by cerebrovascular pathology at death. An interaction between CVRFs and genetic variants might explain the pathogenesis. Genome-wide, gene by CVRF interaction analyses for AD, in 6568 patients and 8101 controls identified FMNL2 (p = 6.6 × 10-7). A significant increase in FMNL2 expression was observed in the brains of patients with brain infarcts and AD pathology and was associated with amyloid and phosphorylated tau deposition. FMNL2 was also prominent in astroglia in AD among those with cerebrovascular pathology. Amyloid toxicity in zebrafish increased fmnl2a expression in astroglia with detachment of astroglial end feet from blood vessels. Knockdown of fmnl2a prevented gliovascular remodeling, reduced microglial activity and enhanced amyloidosis. APP/PS1dE9 AD mice also displayed increased Fmnl2 expression and reduced the gliovascular contacts independent of the gliotic response. Based on this work, we propose that FMNL2 regulates pathology-dependent plasticity of the blood-brain-barrier by controlling gliovascular interactions and stimulating the clearance of extracellular aggregates. Therefore, in AD cerebrovascular risk factors promote cerebrovascular pathology which in turn, interacts with FMNL2 altering the normal astroglial-vascular mechanisms underlying the clearance of amyloid and tau increasing their deposition in brain.


Assuntos
Doença de Alzheimer , Amiloidose , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidose/complicações , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Forminas , Humanos , Camundongos , Camundongos Transgênicos , Fatores de Risco , Peixe-Zebra/metabolismo
3.
Brain ; 143(8): 2561-2575, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32844198

RESUMO

Approximately 30% of older adults exhibit the neuropathological features of Alzheimer's disease without signs of cognitive impairment. Yet, little is known about the genetic factors that allow these potentially resilient individuals to remain cognitively unimpaired in the face of substantial neuropathology. We performed a large, genome-wide association study (GWAS) of two previously validated metrics of cognitive resilience quantified using a latent variable modelling approach and representing better-than-predicted cognitive performance for a given level of neuropathology. Data were harmonized across 5108 participants from a clinical trial of Alzheimer's disease and three longitudinal cohort studies of cognitive ageing. All analyses were run across all participants and repeated restricting the sample to individuals with unimpaired cognition to identify variants at the earliest stages of disease. As expected, all resilience metrics were genetically correlated with cognitive performance and education attainment traits (P-values < 2.5 × 10-20), and we observed novel correlations with neuropsychiatric conditions (P-values < 7.9 × 10-4). Notably, neither resilience metric was genetically correlated with clinical Alzheimer's disease (P-values > 0.42) nor associated with APOE (P-values > 0.13). In single variant analyses, we observed a genome-wide significant locus among participants with unimpaired cognition on chromosome 18 upstream of ATP8B1 (index single nucleotide polymorphism rs2571244, minor allele frequency = 0.08, P = 2.3 × 10-8). The top variant at this locus (rs2571244) was significantly associated with methylation in prefrontal cortex tissue at multiple CpG sites, including one just upstream of ATPB81 (cg19596477; P = 2 × 10-13). Overall, this comprehensive genetic analysis of resilience implicates a putative role of vascular risk, metabolism, and mental health in protection from the cognitive consequences of neuropathology, while also providing evidence for a novel resilience gene along the bile acid metabolism pathway. Furthermore, the genetic architecture of resilience appears to be distinct from that of clinical Alzheimer's disease, suggesting that a shift in focus to molecular contributors to resilience may identify novel pathways for therapeutic targets.


Assuntos
Envelhecimento/genética , Doença de Alzheimer/patologia , Encéfalo/patologia , Disfunção Cognitiva/genética , Reserva Cognitiva/fisiologia , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Cromossomos Humanos Par 18/genética , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
4.
JAMA Neurol ; 77(10): 1288-1298, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32568366

RESUMO

Importance: Genetic studies of Alzheimer disease have focused on the clinical or pathologic diagnosis as the primary outcome, but little is known about the genetic basis of the preclinical phase of the disease. Objective: To examine the underlying genetic basis for brain amyloidosis in the preclinical phase of Alzheimer disease. Design, Setting, and Participants: In the first stage of this genetic association study, a meta-analysis was conducted using genetic and imaging data acquired from 6 multicenter cohort studies of healthy older individuals between 1994 and 2019: the Anti-Amyloid Treatment in Asymptomatic Alzheimer Disease Study, the Berkeley Aging Cohort Study, the Wisconsin Registry for Alzheimer's Prevention, the Biomarkers of Cognitive Decline Among Normal Individuals cohort, the Baltimore Longitudinal Study of Aging, and the Alzheimer Disease Neuroimaging Initiative, which included Alzheimer disease and mild cognitive impairment. The second stage was designed to validate genetic observations using pathologic and clinical data from the Religious Orders Study and Rush Memory and Aging Project. Participants older than 50 years with amyloid positron emission tomographic (PET) imaging data and DNA from the 6 cohorts were included. The largest cohort, the Anti-Amyloid Treatment in Asymptomatic Alzheimer Disease Study (n = 3154), was the PET screening cohort used for a secondary prevention trial designed to slow cognitive decline associated with brain amyloidosis. Six smaller, longitudinal cohort studies (n = 1160) provided additional amyloid PET imaging data with existing genetic data. The present study was conducted from March 29, 2019, to February 19, 2020. Main Outcomes and Measures: A genome-wide association study of PET imaging amyloid levels. Results: From the 4314 analyzed participants (age, 52-96 years; 2478 participants [57%] were women), a novel locus for amyloidosis was noted within RBFOX1 (ß = 0.61, P = 3 × 10-9) in addition to APOE. The RBFOX1 protein localized around plaques, and reduced expression of RBFOX1 was correlated with higher amyloid-ß burden (ß = -0.008, P = .002) and worse cognition (ß = 0.007, P = .006) during life in the Religious Orders Study and Rush Memory and Aging Project cohort. Conclusions and Relevance: RBFOX1 encodes a neuronal RNA-binding protein known to be expressed in neuronal tissues and may play a role in neuronal development. The findings of this study suggest that RBFOX1 is a novel locus that may be involved in the pathogenesis of Alzheimer disease.


Assuntos
Doença de Alzheimer/genética , Amiloidose/genética , Encéfalo , Estudos de Associação Genética/métodos , Variação Genética/genética , Fatores de Processamento de RNA/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Amiloidose/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Estudos de Coortes , Diagnóstico Precoce , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sintomas Prodrômicos
5.
Neurol Genet ; 5(2): e310, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30863791

RESUMO

OBJECTIVE: To determine the putative protective relationship of educational attainment on Alzheimer disease (AD) risk using Mendelian randomization and to test the hypothesis that by using genetic regions surrounding individually associated single nucleotide polymorphisms (SNPs) as the instrumental variable, we can identify genes that contribute to the relationship. METHODS: We performed Mendelian randomization using genome-wide association study summary statistics from studies of educational attainment and AD in two stages. Our instrumental variable comprised (1) 1,271 SNPs significantly associated with educational attainment and (2) individual 2-Mb regions surrounding the genome-wide significant SNPs. RESULTS: A causal inverse relationship between educational attainment and AD was identified by the 1,271 SNPs (odds ratio = 0.63; 95% confidence interval, 0.54-0.74; p = 4.08 x 10-8). Analysis of individual loci identified 2 regions that significantly replicated the causal relationship. Genes within these regions included LRRC2, SSBP2, and NEGR1; the latter a regulator of neuronal growth. CONCLUSIONS: Educational attainment is an important protective factor for AD. Genomic regions that significantly paralleled the overall causal relationship contain genes expressed in neurons or involved in the regulation of neuronal development.

6.
Ann Clin Transl Neurol ; 5(7): 832-842, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30009200

RESUMO

OBJECTIVE: The genetic bases of Alzheimer's disease remain uncertain. An international effort to fully articulate genetic risks and protective factors is underway with the hope of identifying potential therapeutic targets and preventive strategies. The goal here was to identify and characterize the frequency and impact of rare and ultra-rare variants in Alzheimer's disease, using whole-exome sequencing in 20,197 individuals. METHODS: We used a gene-based collapsing analysis of loss-of-function ultra-rare variants in a case-control study design with data from the Washington Heights-Inwood Columbia Aging Project, the Alzheimer's Disease Sequencing Project and unrelated individuals from the Institute of Genomic Medicine at Columbia University. RESULTS: We identified 19 cases carrying extremely rare SORL1 loss-of-function variants among a collection of 6,965 cases and a single loss-of-function variant among 13,252 controls (P = 2.17 × 10-8; OR: 36.2 [95% CI: 5.8-1493.0]). Age-at-onset was 7 years earlier for patients with SORL1 qualifying variant compared with noncarriers. No other gene attained a study-wide level of statistical significance, but multiple top-ranked genes, including GRID2IP,WDR76 and GRN, were among candidates for follow-up studies. INTERPRETATION: This study implicates ultra-rare, loss-of-function variants in SORL1 as a significant genetic risk factor for Alzheimer's disease and provides a comprehensive dataset comparing the burden of rare variation in nearly all human genes in Alzheimer's disease cases and controls. This is the first investigation to establish a genome-wide statistically significant association between multiple extremely rare loss-of-function variants in SORL1 and Alzheimer's disease in a large whole-exome study of unrelated cases and controls.

7.
Artigo em Inglês | MEDLINE | ID: mdl-29403433

RESUMO

Major depressive disorder (MDD) is a debilitating illness that affects twice as many women than men postpuberty. This female bias is thought to be caused by greater heritability of MDD in women and increased vulnerability induced by female sex hormones. We tested this hypothesis by removing the ovaries from prepubertal Wistar Kyoto (WKY) more immobile (WMI) females, a genetic animal model of depression, and its genetically close control, the WKY less immobile (WLI). In adulthood, prepubertally ovariectomized (PrePubOVX) animals and their Sham-operated controls were tested for depression- and anxiety-like behaviors, using the routinely employed forced swim and open field tests, respectively, and RNA-sequencing was performed on their hippocampal RNA. Our results confirmed that the behavioral and hippocampal expression changes that occur after prepubertal ovariectomy are the consequences of an interaction between genetic predisposition to depressive behavior and ovarian hormone-regulated processes. Lack of ovarian hormones during and after puberty in the WLIs led to increased depression-like behavior. In WMIs, both depression- and anxiety-like behaviors worsened by prepubertal ovariectomy. The unbiased exploration of the hippocampal transcriptome identified sets of differentially expressed genes (DEGs) between the strains and treatment groups. The relatively small number of hippocampal DEGs resulting from the genetic differences between the strains confirmed the genetic relatedness of these strains. Nevertheless, the differences in DEGs between the strains in response to prepubertal ovariectomy identified different molecular processes, including the importance of glucocorticoid receptor-mediated mechanisms, that may be causative of the increased depression-like behavior in the presence or absence of genetic predisposition. This study contributes to the understanding of hormonal maturation-induced changes in affective behaviors and the hippocampal transcriptome as it relates to genetic predisposition to depression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA