Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Molecules ; 27(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35056773

RESUMO

Bio-nanotechnology has emerged as an efficient and competitive methodology for the production of added-value nanomaterials (NMs). This review article gathers knowledge gleaned from the literature regarding the biosynthesis of sulfur-based chalcogenide nanoparticles (S-NPs), such as CdS, ZnS and PbS NPs, using various biological resources, namely bacteria, fungi including yeast, algae, plant extracts, single biomolecules, and viruses. In addition, this work sheds light onto the hypothetical mechanistic aspects, and discusses the impact of varying the experimental parameters, such as the employed bio-entity, time, pH, and biomass concentration, on the obtained S-NPs and, consequently, on their properties. Furthermore, various bio-applications of these NMs are described. Finally, key elements regarding the whole process are summed up and some hints are provided to overcome encountered bottlenecks towards the improved and scalable production of biogenic S-NPs.


Assuntos
Biotecnologia , Calcogênios/química , Escherichia coli , Nanopartículas/química , Nanotecnologia , Enxofre/química , Biomassa , Biotecnologia/métodos , Fenômenos Químicos , Escherichia coli/metabolismo , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Pontos Quânticos
2.
Int J Mol Sci ; 22(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498184

RESUMO

The synthesis and assembly of nanoparticles using green technology has been an excellent option in nanotechnology because they are easy to implement, cost-efficient, eco-friendly, risk-free, and amenable to scaling up. They also do not require sophisticated equipment nor well-trained professionals. Bionanotechnology involves various biological systems as suitable nanofactories, including biomolecules, bacteria, fungi, yeasts, and plants. Biologically inspired nanomaterial fabrication approaches have shown great potential to interconnect microbial or plant extract biotechnology and nanotechnology. The present article extensively reviews the eco-friendly production of metalloid nanoparticles, namely made of selenium (SeNPs) and tellurium (TeNPs), using various microorganisms, such as bacteria and fungi, and plants' extracts. It also discusses the methodologies followed by materials scientists and highlights the impact of the experimental sets on the outcomes and shed light on the underlying mechanisms. Moreover, it features the unique properties displayed by these biogenic nanoparticles for a large range of emerging applications in medicine, agriculture, bioengineering, and bioremediation.


Assuntos
Química Verde/métodos , Microbiologia Industrial/métodos , Nanopartículas Metálicas/química , Nanomedicina/métodos , Selênio/química , Telúrio/química , Animais , Humanos , Nanopartículas Metálicas/uso terapêutico
3.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361738

RESUMO

Nanomaterials have supported important technological advances due to their unique properties and their applicability in various fields, such as biomedicine, catalysis, environment, energy, and electronics. This has triggered a tremendous increase in their demand. In turn, materials scientists have sought facile methods to produce nanomaterials of desired features, i.e., morphology, composition, colloidal stability, and surface chemistry, as these determine the targeted application. The advent of photoprocesses has enabled the easy, fast, scalable, and cost- and energy-effective production of metallic nanoparticles of controlled properties without the use of harmful reagents or sophisticated equipment. Herein, we overview the synthesis of gold and silver nanoparticles via photochemical routes. We extensively discuss the effect of varying the experimental parameters, such as the pH, exposure time, and source of irradiation, the use or not of reductants and surfactants, reagents' nature and concentration, on the outcomes of these noble nanoparticles, namely, their size, shape, and colloidal stability. The hypothetical mechanisms that govern these green processes are discussed whenever available. Finally, we mention their applications and insights for future developments.

4.
Molecules ; 25(14)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708767

RESUMO

Bionanotechnology, the use of biological resources to produce novel, valuable nanomaterials, has witnessed tremendous developments over the past two decades. This eco-friendly and sustainable approach enables the synthesis of numerous, diverse types of useful nanomaterials for many medical, commercial, and scientific applications. Countless reviews describing the biosynthesis of nanomaterials have been published. However, to the best of our knowledge, no review has been exclusively focused on the in vivo biosynthesis of inorganic nanomaterials. Therefore, the present review is dedicated to filling this gap by describing the many different facets of the in vivo biosynthesis of nanoparticles (NPs) using living eukaryotic cells and organisms-more specifically, live plants and living biomass of several species of microalgae, yeast, fungus, mammalian cells, and animals. It also highlights the strengths and weaknesses of the synthesis methodologies and the NP characteristics, bio-applications, and proposed synthesis mechanisms. This comprehensive review also brings attention to enabling a better understanding between the living organisms themselves and the synthesis conditions that allow their exploitation as nanobiotechnological production platforms as these might serve as a robust resource to boost and expand the bio-production and use of desirable, functional inorganic nanomaterials.


Assuntos
Eucariotos/química , Compostos Inorgânicos/síntese química , Nanopartículas Metálicas/química , Nanoestruturas/química , Animais , Biomassa , Fungos/química , Fungos/genética , Compostos Inorgânicos/química , Mamíferos/genética , Microalgas/química , Microalgas/genética , Leveduras/química , Leveduras/genética
5.
Molecules ; 24(5)2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30857177

RESUMO

The fresh water microalga Chlamydomonas reinhardtii bioreduced Ag⁺ to silver nanoparticles (AgNPs) via three biosynthetic routes in a process that could be a more sustainable alternative to conventionally produced AgNPs. The AgNPs were synthesized in either the presence of whole cell cultures, an exopolysaccharide (EPS)-containing cell culture supernatant, or living cells that had been separated from the EPS-containing supernatant and then washed before being suspended again in fresh media. While AgNPs were produced by all three methods, the washed cultures had no supernatant-derived EPS and produced only unstable AgNPs, thus the supernatant-EPS was shown to be necessary to cap and stabilize the biogenic AgNPs. TEM images showed stable AgNPs were mostly spherical and showed a bimodal size distribution about the size ranges of 3.0 ± 1.3 nm and 19.2 ± 5.0 nm for whole cultures and 3.5 ± 0.6 nm and 17.4 ± 2.6 nm for EPS only. Moreover, selected area electron diffraction pattern of these AgNPs confirmed their polycrystalline nature. FTIR of the as-produced AgNPs identified polysaccharides, polyphenols and proteins were responsible for the observed differences in the AgNP stability, size and shape. Additionally, Raman spectroscopy indicated carboxylate and amine groups were bound to the AgNP surface.


Assuntos
Chlamydomonas reinhardtii/química , Nanopartículas Metálicas/química , Prata/química , Biotecnologia , Química Verde , Nanotecnologia
6.
Molecules ; 24(19)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569641

RESUMO

In the current study, extracellular polymeric substances (EPS) of Chlamydomonas reinhardtii and photon energy biosynthetically converted Ag+ to silver nanoparticles (AgNPs). The reaction mechanism began with the non-photon-dependent adsorption of Ag+ to EPS biomolecules. An electron from the EPS biomolecules was then donated to reduce Ag+ to Ag0, while a simultaneous release of H+ acidified the reaction mixture. The acidification of the media and production rate of AgNPs increased with increasing light intensity, indicating the light-dependent nature of the AgNP synthesis process. In addition, the extent of Ag+ disappearance from the aqueous phase and the AgNP production rate were both dependent on the quantity of EPS in the reaction mixture, indicating Ag+ adsorption to EPS as an important step in AgNP production. Following the reaction, stabilization of the NPs took place as a function of EPS concentration. The shifts in the intensities and positions of the functional groups, detected by Fourier-transform infrared spectroscopy (FTIR), indicated the potential functional groups in the EPS that reduced Ag+, capped Ag0, and produced stable AgNPs. Based on these findings, a hypothetic three-step, EPS-mediated biosynthesis mechanism, which includes a light-independent adsorption of Ag+, a light-dependent reduction of Ag+ to Ag0, and an EPS concentration-dependent stabilization of Ag0 to AgNPs, has been proposed.


Assuntos
Biopolímeros/química , Chlamydomonas reinhardtii/química , Luz , Nanopartículas Metálicas/química , Prata/química , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula
7.
Molecules ; 24(1)2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30597856

RESUMO

In the current study, two different strains of the green, freshwater microalga Chlamydomonas reinhardtii bioreduced Ag⁺ to silver nanoparticles (AgNPs), which have applications in biosensors, biomaterials, and therapeutic and diagnostic tools. The bioreduction takes place in cell cultures of C. reinhardtii at ambient temperature and atmospheric pressure, thus eliminating the need for specialized equipment, harmful reducing agents or the generation of toxic byproducts. In addition to the visual changes in the cell culture, the production of AgNPs was confirmed by the characteristic surface plasmon resonance (SPR) band in the range of 415⁻425 nm using UV-Vis spectrophotometry and further evolution of the SPR peaks were studied by comparing the peak intensity at maximum absorbance over time. X-ray diffraction (XRD) determined that the NPs were Ag°. Micrographs from transmission electron microscopy (TEM) revealed that 97 ± 2% AgNPs were <10 nm in diameter. Ag⁺ to AgNP conversion was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The AgNPs were stable over time in the cell culture media, acetone, NaCl and reagent alcohol solutions. This was verified by a negligible change in the features of the SPR band after t > 300 days of storage at 4 °C.


Assuntos
Parede Celular/metabolismo , Chlamydomonas reinhardtii/metabolismo , Nanopartículas Metálicas , Prata/química , Prata/metabolismo , Chlamydomonas reinhardtii/genética , Coloides , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula , Solventes , Espectrofotometria , Difração de Raios X
8.
Cureus ; 16(1): e52645, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38380188

RESUMO

Introduction Globally, coronary heart disease is the most imperative cause of premature death. However, timely management with percutaneous coronary intervention (PCI) or coronary artery bypass graft (CABG) can improve the quality of life (QoL) and reduce mortality. The objective of this study was to evaluate the QoL between the patients who received PCI and CABG for the treatment of coronary heart disease. Materials and methods This was a retrospective observational study. Patients who underwent PCI or CABG at least three months before or more at enrollment were purposefully selected. Results A total of 156 patients were enrolled, 78 in each group. Health-related QoL was assessed by using the SF-36 scale for PCI or CABG procedures. The mean ± SD scores of QoL for PCI and CABG were 78.95 ±10.14 and 78.17 ± 10.92, respectively. Of the patients, 72.43% felt better after treatment, 17.95% felt the same as before treatment, and 9.62% felt worse than before treatment in both groups. Among CABG patients, 38.46% felt significantly better after treatment compared to PCI (33.97%) (p=0.048). Moreover, more CABG patients (6.41%) felt significantly worse than PCI patients (3.21%) after treatment (p=0.048). Male patients were significantly more in the CABG group (89.74%) compared to the PCI group (75.64%). In contrast, female patients had more PCI (24.36%) compared to CABG patients (10.26%) (p=0.020). Conclusion Subjective perceptions of physical and mental well-being improved significantly from before treatment to at least three months after treatment, and an enhanced health-related QoL was noticed for medical intervention (PCI) and surgical approach (CABG).

9.
Hum Gene Ther ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38970423

RESUMO

Fabry disease (FD) is a multisystemic lysosomal storage disorder caused by the loss of α-galactosidase A (α-Gal) function. The current standard of care, enzyme replacement therapies, while effective in reducing kidney pathology when treated early, do not fully ameliorate cardiac issues, neuropathic manifestations, and risk of cerebrovascular events. Adeno-associated virus (AAV)-based gene therapies (AAV-GT) can provide superior efficacy across multiple tissues owing to continuous, endogenous production of the therapeutic enzyme and lower treatment burden. We set out to develop a robust AAV-GT to achieve optimal efficacy with the lowest feasible dose to minimize any safety risks that are associated with high-dose AAV-GTs. In this proof-of-concept study, we evaluated the effectiveness of an rAAV9 vector expressing human GLA transgene under a strong ubiquitous promoter, combined with woodchuck hepatitis virus posttranscriptional regulatory element (rAAV9-hGLA). We tested our GT at three different doses, 5e10 vg/kg, 2.5e11 vg/kg, and 6.25e12 vg/kg in the G3Stg/GLAko Fabry mouse model that has tissue Gb3 substrate levels comparable with patients with FD and develops several early FD pathologies. After intravenous injections of rAAV9-hGLA at 11 weeks of age, we observed dose-dependent increases in α-Gal activity in the key target tissues, reaching as high as 393-fold of WT in the kidneys and 6156-fold in the heart at the highest dose. Complete or near-complete substrate clearance was observed in animals treated with the two higher dose levels tested in all tissues except for the brain. We also found dose-dependent improvements in several pathological biomarkers, as well as prevention of structural and functional organ pathology. Taken together, these results indicate that an AAV-GT under a strong ubiquitous promoter has the potential to address the unmet therapeutic needs in patients with FD at relatively low doses.

10.
Syst Rev ; 13(1): 140, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807191

RESUMO

BACKGROUND: Different guideline panels, and individuals, may make different decisions based in part on their preferences. Preferences for or against an intervention are viewed as a consequence of the relative importance people place on the expected or experienced health outcomes it incurs. These findings can then be considered as patient input when balancing effect estimates on benefits and harms reported by empirical evidence on the clinical effectiveness of screening programs. This systematic review update examined the relative importance placed by patients on the potential benefits and harms of mammography-based breast cancer screening to inform an update to the 2018 Canadian Task Force on Preventive Health Care's guideline on screening. METHODS: We screened all articles from our previous review (search December 2017) and updated our searches to June 19, 2023 in MEDLINE, PsycINFO, and CINAHL. We also screened grey literature, submissions by stakeholders, and reference lists. The target population was cisgender women and other adults assigned female at birth (including transgender men and nonbinary persons) aged ≥ 35 years and at average or moderately increased risk for breast cancer. Studies of patients with breast cancer were eligible for health-state utility data for relevant outcomes. We sought three types of data, directly through (i) disutilities of screening and curative treatment health states (measuring the impact of the outcome on one's health-related quality of life; utilities measured on a scale of 0 [death] to 1 [perfect health]), and (ii) other preference-based data, such as outcome trade-offs, and indirectly through (iii) the relative importance of benefits versus harms inferred from attitudes, intentions, and behaviors towards screening among patients provided with estimates of the magnitudes of benefit(s) and harms(s). For screening, we used machine learning as one of the reviewers after at least 50% of studies had been reviewed in duplicate by humans; full-text selection used independent review by two humans. Data extraction and risk of bias assessments used a single reviewer with verification. Our main analysis for utilities used data from utility-based health-related quality of life tools (e.g., EQ-5D) in patients; a disutility value of about 0.04 can be considered a minimally important value for the Canadian public. When suitable, we pooled utilities and explored heterogeneity. Disutilities were calculated for screening health states and between different treatment states. Non-utility data were grouped into categories, based on outcomes compared (e.g. for trade-off data), participant age, and our judgements of the net benefit of screening portrayed by the studies. Thereafter, we compared and contrasted findings while considering sample sizes, risk of bias, subgroup findings and data on knowledge scores, and created summary statements for each data set. Certainty assessments followed GRADE guidance for patient preferences and used consensus among at least two reviewers. FINDINGS: Eighty-two studies (38 on utilities) were included. The estimated disutilities were 0.07 for a positive screening result (moderate certainty), 0.03-0.04 for a false positive (FP; "additional testing" resolved as negative for cancer) (low certainty), and 0.08 for untreated screen-detected cancer (moderate certainty) or (low certainty) an interval cancer. At ≤12 months, disutilities of mastectomy (vs. breast-conserving therapy), chemotherapy (vs. none) (low certainty), and radiation therapy (vs. none) (moderate certainty) were 0.02-0.03, 0.02-0.04, and little-to-none, respectively, though in each case findings were somewhat limited in their applicability. Over the longer term, there was moderate certainty for little-to-no disutility from mastectomy versus breast-conserving surgery/lumpectomy with radiation and from radiation. There was moderate certainty that a majority (>50%) and possibly a large majority (>75%) of women probably accept up to six cases of overdiagnosis to prevent one breast-cancer death; there was some uncertainty because of an indication that overdiagnosis was not fully understood by participants in some cases. Low certainty evidence suggested that a large majority may accept that screening may reduce breast-cancer but not all-cause mortality, at least when presented with relatively high rates of breast-cancer mortality reductions (n = 2; 2 and 5 fewer per 1000 screened), and at least a majority accept that to prevent one breast-cancer death at least a few hundred patients will receive a FP result and 10-15 will have a FP resolved through biopsy. An upper limit for an acceptable number of FPs was not evaluated. When using data from studies assessing attitudes, intentions, and screening behaviors, across all age groups but most evident for women in their 40s, preferences reduced as the net benefit presented by study authors decreased in magnitude. In a relatively low net-benefit scenario, a majority of patients in their 40s may not weigh the benefits as greater than the harms from screening whereas for women in their 50s a large majority may prefer screening (low certainty evidence for both ages). There was moderate certainty that a large majority of women 50 years of age and 50 to 69 years of age, who have usually experienced screening, weigh the benefits as greater than the harms from screening in a high net-benefit scenario. A large majority of patients aged 70-71 years who have recently screened probably think the benefits outweigh the harms of continuing to screen. A majority of women in their mid-70s to early 80s may prefer to continue screening. CONCLUSIONS: Evidence across a range of data sources on how informed patients value the potential outcomes from breast-cancer screening will be useful during decision-making for recommendations. The evidence suggests that all of the outcomes examined have importance to women of any age, that there is at least some and possibly substantial (among those in their 40s) variability across and within age groups about the acceptable magnitude of effects across outcomes, and that provision of easily understandable information on the likelihood of the outcomes may be necessary to enable informed decision making. Although studies came from a wide range of countries, there were limited data from Canada and about whether findings applied well across an ethnographically and socioeconomically diverse population. SYSTEMATIC REVIEW REGISTRATION: Protocol available at Open Science Framework https://osf.io/xngsu/ .


Assuntos
Neoplasias da Mama , Detecção Precoce de Câncer , Mamografia , Preferência do Paciente , Humanos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/prevenção & controle , Detecção Precoce de Câncer/métodos , Feminino , Canadá , Guias de Prática Clínica como Assunto , Serviços Preventivos de Saúde , Comitês Consultivos , Qualidade de Vida
11.
Nanomaterials (Basel) ; 13(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36770385

RESUMO

Selenium is an important dietary supplement and an essential trace element incorporated into selenoproteins with growth-modulating properties and cytotoxic mechanisms of action. However, different compounds of selenium usually possess a narrow nutritional or therapeutic window with a low degree of absorption and delicate safety margins, depending on the dose and the chemical form in which they are provided to the organism. Hence, selenium nanoparticles (SeNPs) are emerging as a novel therapeutic and diagnostic platform with decreased toxicity and the capacity to enhance the biological properties of Se-based compounds. Consistent with the exciting possibilities offered by nanotechnology in the diagnosis, treatment, and prevention of diseases, SeNPs are useful tools in current biomedical research with exceptional benefits as potential therapeutics, with enhanced bioavailability, improved targeting, and effectiveness against oxidative stress and inflammation-mediated disorders. In view of the need for developing eco-friendly, inexpensive, simple, and high-throughput biomedical agents that can also ally with theranostic purposes and exhibit negligible side effects, biogenic SeNPs are receiving special attention. The present manuscript aims to be a reference in its kind by providing the readership with a thorough and comprehensive review that emphasizes the current, yet expanding, possibilities offered by biogenic SeNPs in the biomedical field and the promise they hold among selenium-derived products to, eventually, elicit future developments. First, the present review recalls the physiological importance of selenium as an oligo-element and introduces the unique biological, physicochemical, optoelectronic, and catalytic properties of Se nanomaterials. Then, it addresses the significance of nanosizing on pharmacological activity (pharmacokinetics and pharmacodynamics) and cellular interactions of SeNPs. Importantly, it discusses in detail the role of biosynthesized SeNPs as innovative theranostic agents for personalized nanomedicine-based therapies. Finally, this review explores the role of biogenic SeNPs in the ongoing context of the SARS-CoV-2 pandemic and presents key prospects in translational nanomedicine.

12.
Heliyon ; 8(10): e11204, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36325144

RESUMO

The fatality of road accidents in this era is alarming. According to WHO, approximately 1.30 million people die each year in road accidents. Road accidents result in significant socioeconomic losses for people, their families, and the country. The integration of modern technologies into automobiles can help to reduce the number of people killed or injured in road accidents. Most of the study and police reports claim that fatigued driving is one of the deadliest factors behind many road accidents. This paper presents a complete embedded system to detect fatigue driving using deep learning, computer vision, and heart rate monitoring with Nvidia Jetson Nano developer kit, Arduino Uno, and AD8232 heart rate module. The proposed system can monitor the driver's real-time situations, then analyze the situation to detect any fatigue conditions and act accordingly. The onboard camera module constantly monitors the driver. The frames are retrieved and analyzed by the core system that uses deep learning and computer vision techniques to verify the situation with Nvidia Jetson Nano. The driver's states are identified using eye and mouth localization approaches from 68 distinct facial landmarks. Experimentally driven threshold data is employed to classify the states. The onboard heart rate module constantly measures the heart rates and detects any fluctuation in BPM related to the drowsiness. This system uses a convolutional neural network-based deep learning framework to include additional face mask detection to cope with the current pandemic situation. The heart rate module works parallelly where the other modules work in a conditional sequential manner to ensure uninterrupted detection. It will detect any sign of drowsiness in real-time and generate the alarm. The system successfully passed the initial lab tests and some actual situation experiments with 97.44% accuracy in fatigue detection and 97.90% accuracy in face mask identification. The automatic device was able to analyze different situations of drivers (different distances of driver from the camera, various lighting conditions, wearing eyeglasses, oblique projection) more precisely and generate an alarm before the accident happened.

13.
Comput Biol Med ; 147: 105682, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35714504

RESUMO

While the advanced diagnostic tools and healthcare management protocols have been struggling to contain the COVID-19 pandemic, the spread of the contagious viral pathogen before the symptom onset acted as the Achilles' heel. Although reverse transcription-polymerase chain reaction (RT-PCR) has been widely used for COVID-19 diagnosis, they are hardly administered before any visible symptom, which provokes rapid transmission. This study proposes PCovNet, a Long Short-term Memory Variational Autoencoder (LSTM-VAE)-based anomaly detection framework, to detect COVID-19 infection in the presymptomatic stage from the Resting Heart Rate (RHR) derived from the wearable devices, i.e., smartwatch or fitness tracker. The framework was trained and evaluated in two configurations on a publicly available wearable device dataset consisting of 25 COVID-positive individuals in the span of four months including their COVID-19 infection phase. The first configuration of the framework detected RHR abnormality with average Precision, Recall, and F-beta scores of 0.946, 0.234, and 0.918, respectively. However, the second configuration detected aberrant RHR in 100% of the subjects (25 out of 25) during the infectious period. Moreover, 80% of the subjects (20 out of 25) were detected during the presymptomatic stage. These findings prove the feasibility of using wearable devices with such a deep learning framework as a secondary diagnosis tool to circumvent the presymptomatic COVID-19 detection problem.


Assuntos
COVID-19 , Aprendizado Profundo , Dispositivos Eletrônicos Vestíveis , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Pandemias , SARS-CoV-2
14.
Curr Diabetes Rev ; 18(7): e171121197987, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34789132

RESUMO

Minerals are critical for maintaining overall health. These tiny chemical compounds are responsible for enzymatic activation, maintaining healthy teeth and bones, regulating energy metabolism, enhancing immunity, and aiding muscle and brain function. However, mineral deficiency in the form of inadequate or under nourished intake affects millions of people throughout the world, with well-documented adverse health consequences of malnutrition. Conversely, mineral deficiency may also be a risk factor for Insulin Resistance (IR) and obesity. This review focuses on another, more "less discussed" form of malnutrition, namely mineral deficiency and its contribution to metabolic disorders. At the cellular level, minerals maintain not only molecular communication but also trigger several key biochemical pathways. Disturbances in these processes due to mineral insufficiency may gradually lead to metabolic disorders such as insulin resistance, pre-diabetes, and central obesity, which might lead to renal failure, cardiac arrest, hepatic carcinoma, and various neurodegenerative diseases. Here we discuss the burden of disease promoted by mineral deficiencies and the medical, social, and economic consequences. Mineral deficiency-mediated IR and obesity have a considerable negative impact on individual well-being, physical consideration, and economic productivity. We discuss possible molecular mechanisms of mineral deficiency that may lead to IR and obesity and suggest strategies to counter these metabolic disorders. To protect mankind from mineral nutrient deficiencies, the key is to take a variety of foods in reasonable quantities, such as organic and pasture-raised eggs, low fat dairy, and grass-fed and finished meats, insecticide, and pesticide-free vegetables and fruits.


Assuntos
Resistência à Insulina , Desnutrição , Metabolismo Energético , Humanos , Minerais , Obesidade/metabolismo
15.
Environ Technol ; 42(9): 1366-1372, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31530104

RESUMO

Despite the great profits of rubber latex production, its preliminary processing releases a large amount of wastewater into the water bodies from several processing steps. This rubber effluent is rich in total Kjeldahl nitrogen (TKN), total dissolved solids (TDS), biological oxygen demand (BOD) and chemical oxygen demand (COD). Therefore, the study addressed a liquid phase treatment of the effluent using an Upflow Anaerobic Sludge Blanket (UASB) reactor followed by coagu-flocculation and aeration. In addition, the gas phase (containing odorous hydrogen sulphide of 10-12% by volume) from the UASB reactor was sent to a caustic scrubber where the H2S removal efficiency of 63 ± 5% was achieved. This integrated multi-phase treatment scheme proved to be an effective approach by reducing TKN, TDS, BOD and COD by 68-87%, 61-69%, 81-84% and 81-87% respectively in the final effluent.


Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos , Anaerobiose , Borracha , Esgotos
16.
Healthcare (Basel) ; 9(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546110

RESUMO

Misinformation such as on coronavirus disease 2019 (COVID-19) drugs, vaccination or presentation of its treatment from untrusted sources have shown dramatic consequences on public health. Authorities have deployed several surveillance tools to detect and slow down the rapid misinformation spread online. Large quantities of unverified information are available online and at present there is no real-time tool available to alert a user about false information during online health inquiries over a web search engine. To bridge this gap, we propose a web search engine misinformation notifier extension (SEMiNExt). Natural language processing (NLP) and machine learning algorithm have been successfully integrated into the extension. This enables SEMiNExt to read the user query from the search bar, classify the veracity of the query and notify the authenticity of the query to the user, all in real-time to prevent the spread of misinformation. Our results show that SEMiNExt under artificial neural network (ANN) works best with an accuracy of 93%, F1-score of 92%, precision of 92% and a recall of 93% when 80% of the data is trained. Moreover, ANN is able to predict with a very high accuracy even for a small training data size. This is very important for an early detection of new misinformation from a small data sample available online that can significantly reduce the spread of misinformation and maximize public health safety. The SEMiNExt approach has introduced the possibility to improve online health management system by showing misinformation notifications in real-time, enabling safer web-based searching on health-related issues.

17.
Plant Biotechnol (Tokyo) ; 37(4): 485-488, 2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33850439

RESUMO

A laser micromarking technique on plant epidermis was developed to study how a plant can reduce the stress in bending behavior by controlling the growth and morphogenesis. The negative gravitropism in a pea seedling (Pisum sativum L.) was discussed based on the time-dependent displacement of laser marking points which were formed by spatially-selective laser ablation of the cuticle layer that covers the outer surface of a plant. The elongation of the stem in the horizontal direction was remarkable in the first half of the gravitropism. The elongation percentages of the stem length between laser-marking points at around upper surface, middle, and bottom surface were evaluated to be 2.57, 4.87, and 7.70%, respectively. The characteristic feature of the stem bending in gravitropism is the elongation even at the upper surface region, that is, inside of the bending. This is a different feature from cantilever beams for structural materials like metals and polymers, where the compression of the upper surface and elongation of the bottom surface are caused by bending. Another laser micromarking technique was developed to improve the resolution of a dot-matrix pattern by fluorescent material transfer to a plant through a masking film with a micro-hole matrix pattern. Similar time-dependent displacement behavior was observed for a fluorescent dot-marked stem showing a feedback control loop in the mechanical optimization. These results suggested that plants solve the problem of the stress in stem bending through growth. The laser micromarking is an effective method for studying the mechanical optimization in plants.

18.
Sci Rep ; 8(1): 5106, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29572495

RESUMO

A microwave reaction to convert 99 ± 1% of Ag+ to silver nanoparticles (AgNPs) of size <10 nm within 4.5 min with a specific production rate and energy input of 5.75 mg AgNP L-1 min-1 and 5.45 W mL-1 reaction volume was developed. The glucose reduced and food grade starch stabilized particles remained colloidally stable with less than a 4% change in the surface plasmon resonance band at 425-430 nm at t > 300 days. TEM determined the size of AgNPs, while TEM-EDS and XRD verified elemental composition. The conversion was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and thermal gravimetric analysis (TGA). Additionally, the required silver to starch input mass ratio, 1.0:1.3, to produce colloidally stabilized AgNPs is significantly reduced compared to previous studies. The antibacterial activity of freshly prepared AgNPs and AgNPs aged >300 days was demonstrated against E. coli as determined by agar diffusion assays. This result, corroborated by spectrophotometric and TEM measurements, indicates long-term colloidal stability of the product. Thus, this study sustainably produced antibacterial AgNPs from minimal inputs. In the broader context, the current work has quantified a sustainable platform technology to produce sphere-like inorganic nanoparticles with antimicrobial properties.

19.
Sci Rep ; 6: 38906, 2016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-28008923

RESUMO

In this paper, we report a compact and ultra-wide band antenna on a flexible substrate using the 5-(4-(perfluorohexyl)phenyl)thiophene-2-carbaldehyde compound for microwave imaging. In contrast to other microwave based imaging systems, such as an array of 16 antennas, we proposed a bi-static radar based imaging system consisting of two omnidirectional antennas, which reduces complexity and the overall dimension. The proposed compact antennas are 20 × 14 mm2 and designed for operating at frequencies from 4 to 6 GHz. To allow for implantation into a bra, the electromagnetic performances of the antennas must be considered in bending conditions. In comparison with the recently reported flexible antennas, we demonstrated both electromagnetic performance and imaging reconstruction for bending conditions. For the proof of concept, the electromagnetic performances both at flat and bending conditions have been verified using a homogeneous multilayer model of the human breast phantom. Our results demonstrate that the antenna, even at bending conditions, exhibits an excellent omni-directional radiation pattern with an average efficiency above 70% and average gain above 1 dBi, within the operational frequency band. The comprehensive aim of the realized antenna is to design a biodegradable and wearable antenna-based bra for early breast cancer detection in the future.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Vestuário , Diagnóstico por Imagem , Micro-Ondas , Dispositivos Eletrônicos Vestíveis , Diagnóstico por Imagem/instrumentação , Diagnóstico por Imagem/métodos , Feminino , Humanos
20.
Materials (Basel) ; 9(5)2016 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28773479

RESUMO

In this paper, a novel phenyl-thiophene-2-carbaldehyde compound-based flexible substrate material has been presented. Optical and microwave characterization of the proposed material are done to confirm the applicability of the proposed material as a substrate. The results obtained in this work show that the phenyl-thiophene-2-carbaldehyde consists of a dielectric constant of 3.03, loss tangent of 0.003, and an optical bandgap of 3.24 eV. The proposed material is analyzed using commercially available EM simulation software and validated by the experimental analysis of the flexible substrate. The fabricated substrate also shows significant mechanical flexibility and light weight. The radiating copper patch deposited on the proposed material substrate incorporated with partial ground plane and microstrip feeding technique shows an effective impedance bandwidth of 3.8 GHz. It also confirms an averaged radiation efficiency of 81% throughout the frequency band of 5.4-9.2 GHz.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA