Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Sci ; 136(14)2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37259831

RESUMO

During developmental and immune responses, cells move towards or away from some signals. Although much is known about chemoattraction, chemorepulsion (the movement of cells away from a stimulus) remains poorly understood. Proliferating Dictyostelium discoideum cells secrete a chemorepellent protein called AprA. Examining existing knockout strains, we previously identified proteins required for AprA-induced chemorepulsion, and a genetic screen suggested that the enzyme phosphatidylinositol phosphate kinase A (PIPkinA, also known as Pik6) might also be needed for chemorepulsion. Here, we show that cells lacking PIPkinA are not repelled by AprA, and that this phenotype is rescued by expression of PIPkinA. To bias cell movement, AprA inhibits Ras activation at the side of the cell closest to the source of AprA, and we find that PIPkinA is required for AprA to inhibit Ras activation. PIPkinA decreases levels of phosphatidylinositol 4-phosphate [PI(4)P] and phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3], and possibly because of these effects, potentiates phagocytosis and inhibits cell proliferation. Cells lacking PIPkinA show normal AprA binding, suggesting that PIPkinA regulates chemorepulsion at a step between the AprA receptor and AprA inhibition of Ras activation.


Assuntos
Dictyostelium , Dictyostelium/metabolismo , Fosfatos/metabolismo , Fosfatos/farmacologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proliferação de Células , Testes Genéticos
2.
J Cell Sci ; 135(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36017702

RESUMO

Dictyostelium discoideum is a unicellular eukaryote that eats bacteria, and eventually outgrows the bacteria. D. discoideum cells accumulate extracellular polyphosphate (polyP), and the polyP concentration increases as the local cell density increases. At high cell densities, the correspondingly high extracellular polyP concentrations allow cells to sense that they are about to outgrow their food supply and starve, causing the D. discoideum cells to inhibit their proliferation. In this report, we show that high extracellular polyP inhibits exocytosis of undigested or partially digested nutrients. PolyP decreases plasma membrane recycling and apparent cell membrane fluidity, and this requires the G protein-coupled polyP receptor GrlD, the polyphosphate kinase Ppk1 and the inositol hexakisphosphate kinase I6kA. PolyP alters protein contents in detergent-insoluble crude cytoskeletons, but does not significantly affect random cell motility, cell speed or F-actin levels. Together, these data suggest that D. discoideum cells use polyP as a signal to sense their local cell density and reduce cell membrane fluidity and membrane recycling, perhaps as a mechanism to retain ingested food when the cells are about to starve. This article has an associated First Person interview with the first author of the paper.


Assuntos
Dictyostelium , Actinas/metabolismo , Detergentes/metabolismo , Dictyostelium/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Humanos , Nutrientes , Polifosfatos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
3.
mBio ; 14(5): e0193923, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37754562

RESUMO

IMPORTANCE: Although most bacteria are quickly killed after phagocytosis by a eukaryotic cell, some pathogenic bacteria escape death after phagocytosis. Pathogenic Mycobacterium species secrete polyP, and the polyP is necessary for the bacteria to prevent their killing after phagocytosis. Conversely, exogenous polyP prevents the killing of ingested bacteria that are normally killed after phagocytosis by human macrophages and the eukaryotic microbe Dictyostelium discoideum. This suggests the possibility that in these cells, a signal transduction pathway is used to sense polyP and prevent killing of ingested bacteria. In this report, we identify key components of the polyP signal transduction pathway in D. discoideum. In cells lacking these components, polyP is unable to inhibit killing of ingested bacteria. The pathway components have orthologs in human cells, and an exciting possibility is that pharmacologically blocking this pathway in human macrophages would cause them to kill ingested pathogens such as Mycobacterium tuberculosis.


Assuntos
Dictyostelium , Polifosfatos , Humanos , Polifosfatos/metabolismo , Difosfatos/metabolismo , Dictyostelium/microbiologia , Bactérias/metabolismo , Fagocitose , Serina-Treonina Quinases TOR
4.
MicroPubl Biol ; 20212021.
Artigo em Inglês | MEDLINE | ID: mdl-34278246

RESUMO

Using Gene Ontology annotation in any aspect or using any evidence code, we found that approximately 14% percent of predicted D. discoideum proteins have no GO annotations and no obvious similarity to any annotated protein across diverse organisms. We have been systematically examining these unannotated protein sequences using software that predicts a protein structure and then compares the predicted structure to known structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA