Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Allergy ; 79(7): 1831-1843, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38686450

RESUMO

BACKGROUND: The effects of inhaled corticosteroids (ICS) on healthy airways are poorly defined. OBJECTIVES: To delineate the effects of ICS on gene expression in healthy airways, without confounding caused by changes in disease-related genes and disease-related alterations in ICS responsiveness. METHODS: Randomized open-label bronchoscopy study of high-dose ICS therapy in 30 healthy adult volunteers randomized 2:1 to (i) fluticasone propionate 500 mcg bd daily or (ii) no treatment, for 4 weeks. Laboratory staff were blinded to allocation. Biopsies and brushings were analysed by immunohistochemistry, bulk RNA sequencing, DNA methylation array and metagenomics. RESULTS: ICS induced small between-group differences in blood and lamina propria eosinophil numbers, but not in other immunopathological features, blood neutrophils, FeNO, FEV1, microbiome or DNA methylation. ICS treatment upregulated 72 genes in brushings and 53 genes in biopsies, and downregulated 82 genes in brushings and 416 genes in biopsies. The most downregulated genes in both tissues were canonical markers of type-2 inflammation (FCER1A, CPA3, IL33, CLEC10A, SERPINB10 and CCR5), T cell-mediated adaptive immunity (TARP, TRBC1, TRBC2, PTPN22, TRAC, CD2, CD8A, HLA-DQB2, CD96, PTPN7), B-cell immunity (CD20, immunoglobulin heavy and light chains) and innate immunity, including CD48, Hobit, RANTES, Langerin and GFI1. An IL-17-dependent gene signature was not upregulated by ICS. CONCLUSIONS: In healthy airways, 4-week ICS exposure reduces gene expression related to both innate and adaptive immunity, and reduces markers of type-2 inflammation. This implies that homeostasis in health involves tonic type-2 signalling in the airway mucosa, which is exquisitely sensitive to ICS.


Assuntos
Corticosteroides , Voluntários Saudáveis , Humanos , Adulto , Masculino , Administração por Inalação , Feminino , Corticosteroides/administração & dosagem , Adulto Jovem , Pessoa de Meia-Idade , Metilação de DNA/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/imunologia , Mucosa Respiratória/efeitos dos fármacos , Fluticasona/administração & dosagem , Fluticasona/farmacologia
3.
Macromol Biosci ; : e2400073, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806184

RESUMO

The objective for this study is to advance the development of a specialized biomaterial that can effectively facilitate the regeneration of adipose tissue. In prior studies, the assessment of collagen (Col), elastin (Ela), and fibrin (Fib) unary scaffolds has been conducted. However, it is important to note that native adipose tissue is comprised of a diverse array of extracellular matrix (ECM) constituents. To mimic this behavior, binary compositions of collagen, elastin, and fibrin are fabricated in a 1:1 ratio, resulting in the formation of Col/Ela, Col/Fib, and Ela/Fib composites through a customized fabrication procedure. The physical properties of these scaffolds are comprehensively analyzed using a range of material characterization techniques. Additionally, the biological properties of the scaffolds are investigated by examining the survival, proliferation, and phenotype of adipose-derived stem cells. Subsequently, the aforementioned binary scaffolds are implanted into a rodent model for 28 days. the explants are analysed through X-ray microtomography, histology, and immunohistochemistry. The findings of the study demonstrate that the utilization of binary combinations of Col/Ela, Col/Fib, and Ela/Fib has a discernible impact on the physical and biological characteristics of the scaffolds. Nevertheless, Ela/Fib exhibits characteristics that make it a suitable candidate for adipogenesis due to its notable upregulation of caveolin-1 expression in both acellular and cellular cohorts. The combination of two natural polymers in this cell-material interaction has significantly enhanced the comprehension of adipogenesis.

4.
Environ Pollut ; 337: 122561, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37742862

RESUMO

Household air pollution caused by inefficient cooking practices causes 4 million deaths a year worldwide. In Nepal, 86% of the rural population use solid fuels for cooking. Over 25% of premature deaths associated with air pollution are respiratory in nature. Here we aimed to identify molecular signatures of different cookstove and fuel type exposures in human airway epithelial cells, to understand the mechanisms mediating cook stove smoke induced lung disease. Primary human airway epithelial cells in submerged culture were exposed to traditional cook stove (TCS), improved cook stove (ICS) and liquefied petroleum gas (LPG) stove smoke extracts. Changes to gene expression, DNA methylation and hydroxymethylation were measured by bulk RNA sequencing and HumanMethylationEPIC BeadChip following oxidative bisulphite conversion, respectively. TCS smoke extract alone reproducibly caused changes in the expression of 52 genes enriched for oxidative stress pathways. TCS, ICS and LPG smoke extract exposures were associated with distinct changes to DNA methylation and hydroxymethylation. A subset of TCS induced genes were associated with differentially methylated and/or hydroxymethylated CpGs sites, and enriched for the ferroptosis pathway and the upstream regulator NFE2L2. DNA methylation and hydroxymethylation changes not associated with a concurrent change in gene expression, were linked to biological processes and molecular pathways important to airway health, including neutrophil function, transforming growth factor beta signalling, GTPase activity, and cell junction organisation. Our data identified differential impacts of TCS, ICS and LPG cook stove smoke on the human airway epithelium transcriptome, DNA methylome and hydroxymethylome and provide further insight into the association between indoor air pollution exposure and chronic lung disease mechanisms.


Assuntos
Poluição do Ar em Ambientes Fechados , Pneumopatias , Petróleo , Humanos , Fumaça/efeitos adversos , Nepal , Metilação de DNA , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Culinária , População Rural , Expressão Gênica
5.
Cells ; 10(8)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34440746

RESUMO

Fibroblasts are an integral part of connective tissue and play a crucial role in developing and modulating the structural framework of tissues by acting as the primary source of extracellular matrix (ECM). A precise definition of the fibroblast remains elusive. Lung fibroblasts orchestrate the assembly and turnover of ECM to facilitate gas exchange alongside performing immune functions including the secretion of bioactive molecules and antigen presentation. DNA methylation is the covalent attachment of a methyl group to primarily cytosines within DNA. DNA methylation contributes to diverse cellular phenotypes from the same underlying genetic sequence, with DNA methylation profiles providing a memory of cellular origin. The lung fibroblast population is increasingly viewed as heterogeneous with between 6 and 11 mesenchymal populations identified across health and lung disease to date. DNA methylation has been associated with different lung fibroblast populations in health and with alterations in lung disease, but to varying extents. In this review, we will discuss lung fibroblast heterogeneity and the evidence for a contribution from DNA methylation to defining cell populations and alterations in disease.


Assuntos
Metilação de DNA , Fibrose Pulmonar/patologia , Asma/metabolismo , Asma/patologia , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Fenótipo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Fibrose Pulmonar/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia
6.
J Tissue Eng ; 12: 20417314211019238, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104389

RESUMO

Current gold standard to treat soft tissue injuries caused by trauma and pathological condition are autografts and off the shelf fillers, but they have inherent weaknesses like donor site morbidity, immuno-compatibility and graft failure. To overcome these limitations, tissue-engineered polymers are seeded with stem cells to improve the potential to restore tissue function. However, their interaction with native tissue is poorly understood so far. To study these interactions and improve outcomes, we have fabricated scaffolds from natural polymers (collagen, fibrin and elastin) by custom-designed processes and their material properties such as surface morphology, swelling, wettability and chemical cross-linking ability were characterised. By using 3D scaffolds, we comprehensive assessed survival, proliferation and phenotype of adipose-derived stem cells in vitro. In vivo, scaffolds were seeded with adipose-derived stem cells and implanted in a rodent model, with X-ray microtomography, histology and immunohistochemistry as read-outs. Collagen-based materials showed higher cell adhesion and proliferation in vitro as well as higher adipogenic properties in vivo. In contrast, fibrin demonstrated poor cellular and adipogenesis properties but higher angiogenesis. Elastin formed the most porous scaffold, with cells displaying a non-aggregated morphology in vitro while in vivo elastin was the most degraded scaffold. These findings of how polymers present in the natural polymers mimicking ECM and seeded with stem cells affect adipogenesis in vitro and in vivo can open avenues to design 3D grafts for soft tissue repair.

7.
ACS Appl Mater Interfaces ; 12(12): 13587-13597, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32107914

RESUMO

Biomaterials for tissue engineering include natural and synthetic polymers, but their clinical application is still limited due to various disadvantages associated with the use of these polymers. This uncertainty of the polymeric approach in tissue engineering launches an opportunity to address a key question: can we eliminate the disadvantages of both natural and synthetic polymers by combining them to form a synergistic relationship? To answer this question, we fabricated scaffolds from elastin, collagen, fibrin, and electrospun polycaprolactone (PCL) with different ratios. The material characterization of these scaffolds investigated degradation, water contact angle, angiogenesis by an ex ovo chorion allantoic membrane (CAM) assay, and mechanical and structural properties. Biological activity and specific differentiation pathways (MSC, adipogenic, osteogenic, myogenic, and chondrogenic) were studied by using human adipose-derived stem cells. Results indicated that all composite polymers degraded at a different rate, thus affecting their mechanical integrity. Cell-based assays demonstrated continual proliferative and viable properties of the cells on all seeded scaffolds with the particular initiation of a differentiation pathway among which the PCL/collagen/fibrin composite was the most angiogenic material with maximum vasculature. We were able to tailor the physical and biological properties of PCL-based composites to form a synergistic relationship for various tissue regeneration applications.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Polímeros/farmacologia , Alicerces Teciduais/química , Alantoide/efeitos dos fármacos , Alantoide/crescimento & desenvolvimento , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Embrião de Galinha , Córion/efeitos dos fármacos , Córion/crescimento & desenvolvimento , Colágeno/química , Elastina/química , Fibrina/química , Humanos , Células-Tronco Mesenquimais/citologia , Poliésteres/química , Poliésteres/farmacologia , Polímeros/síntese química , Polímeros/química , Engenharia Tecidual/métodos
8.
J Diabetes Res ; 2015: 436879, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26106624

RESUMO

The vascular complications of diabetes significantly impact the quality of life and mortality in diabetic patients. Extensive evidence from various human clinical trials has clearly established that a period of poor glycemic control early in the disease process carries negative consequences, such as an increase in the development and progression of vascular complications that becomes evident many years later. Importantly, intensive glycemic control established later in the disease process cannot reverse or slow down the onset or progression of diabetic vasculopathy. This has been named the glycemic memory phenomenon. Scientists have successfully modelled glycemic memory using various in vitro and in vivo systems. This review emphasizes that oxidative stress and accumulation of advanced glycation end products are key factors driving glycemic memory in endothelial cells. Furthermore, various epigenetic marks have been proposed to closely associate with vascular glycemic memory. In addition, we comment on the importance of endothelial progenitors and their role as endogenous vasoreparative cells that are negatively impacted by the diabetic milieu and may constitute a "carrier" of glycemic memory. Considering the potential of endothelial progenitor-based cytotherapies, future studies on their glycemic memory are warranted to develop epigenetics-based therapeutics targeting diabetic vascular complications.


Assuntos
Angiopatias Diabéticas/etiologia , Células Progenitoras Endoteliais/metabolismo , Epigênese Genética , Hiperglicemia/fisiopatologia , Modelos Biológicos , Animais , Diferenciação Celular , Metilação de DNA , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/patologia , Células Progenitoras Endoteliais/patologia , Produtos Finais de Glicação Avançada/sangue , Humanos , Hiperglicemia/sangue , MicroRNAs/metabolismo , Estresse Oxidativo , Nicho de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA