Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13599, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38866901

RESUMO

Identifying genetic susceptibility factors for complex disorders remains a challenging task. To analyze collections of small and large pedigrees where genetic heterogeneity is likely, but biological commonalities are plausible, we have developed a weights-based pipeline to prioritize variants and genes. The Weights-based vAriant Ranking in Pedigrees (WARP) pipeline prioritizes variants using 5 weights: disease incidence rate, number of cases in a family, genome fraction shared amongst cases in a family, allele frequency and variant deleteriousness. Weights, except for the population allele frequency weight, are normalized between 0 and 1. Weights are combined multiplicatively to produce family-specific-variant weights that are then averaged across all families in which the variant is observed to generate a multifamily weight. Sorting multifamily weights in descending order creates a ranked list of variants and genes for further investigation. WARP was validated using familial melanoma sequence data from the European Genome-phenome Archive. The pipeline identified variation in known germline melanoma genes POT1, MITF and BAP1 in 4 out of 13 families (31%). Analysis of the other 9 families identified several interesting genes, some of which might have a role in melanoma. WARP provides an approach to identify disease predisposing genes in studies with small and large pedigrees.


Assuntos
Predisposição Genética para Doença , Linhagem , Humanos , Frequência do Gene , Melanoma/genética , Variação Genética , Fator de Transcrição Associado à Microftalmia/genética , Masculino , Feminino
2.
PLoS One ; 18(6): e0287602, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37379307

RESUMO

Genome-wide association studies have revealed common genetic variants with small effect sizes associated with diverse lymphoid cancers. Family studies have uncovered rare variants with high effect sizes. However, these variants explain only a portion of the heritability of these cancers. Some of the missing heritability may be attributable to rare variants with small effect sizes. We aim to identify rare germline variants associated with familial lymphoid cancers using exome sequencing. One case per family was selected from 39 lymphoid cancer families based on early onset of disease or rarity of subtype. Control data was from Non-Finnish Europeans in gnomAD exomes (N = 56,885) or ExAC (N = 33,370). Gene and pathway-based burden tests for rare variants were performed using TRAPD. Five putatively pathogenic germline variants were found in four genes: INTU, PEX7, EHHADH, and ASXL1. Pathway-based association tests identified the innate and adaptive immune systems, peroxisomal pathway and olfactory receptor pathway as associated with lymphoid cancers in familial cases. Our results suggest that rare inherited defects in the genes involved in immune system and peroxisomal pathway may predispose individuals to lymphoid cancers.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias , Humanos , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Sequenciamento do Exoma
3.
G3 (Bethesda) ; 13(8)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37307358

RESUMO

Vineyards in wine regions around the world are reservoirs of yeast with oenological potential. Saccharomyces cerevisiae ferments grape sugars to ethanol and generates flavor and aroma compounds in wine. Wineries place a high-value on identifying yeast native to their region to develop a region-specific wine program. Commercial wine strains are genetically very similar due to a population bottleneck and in-breeding compared to the diversity of S. cerevisiae from the wild and other industrial processes. We have isolated and microsatellite-typed hundreds of S. cerevisiae strains from spontaneous fermentations of grapes from the Okanagan Valley wine region in British Columbia, Canada. We chose 75 S. cerevisiae strains, based on our microsatellite clustering data, for whole genome sequencing using Illumina paired-end reads. Phylogenetic analysis shows that British Columbian S. cerevisiae strains cluster into 4 clades: Wine/European, Transpacific Oak, Beer 1/Mixed Origin, and a new clade that we have designated as Pacific West Coast Wine. The Pacific West Coast Wine clade has high nucleotide diversity and shares genomic characteristics with wild North American oak strains but also has gene flow from Wine/European and Ecuadorian clades. We analyzed gene copy number variations to find evidence of domestication and found that strains in the Wine/European and Pacific West Coast Wine clades have gene copy number variation reflective of adaptations to the wine-making environment. The "wine circle/Region B", a cluster of 5 genes acquired by horizontal gene transfer into the genome of commercial wine strains is also present in the majority of the British Columbian strains in the Wine/European clade but in a minority of the Pacific West Coast Wine clade strains. Previous studies have shown that S. cerevisiae strains isolated from Mediterranean Oak trees may be the living ancestors of European wine yeast strains. This study is the first to isolate S. cerevisiae strains with genetic similarity to nonvineyard North American Oak strains from spontaneous wine fermentations.


Assuntos
Saccharomyces cerevisiae , Vinho , Variações do Número de Cópias de DNA , Fermentação , Filogenia , Canadá , Melhoramento Vegetal , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA