Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Breast Cancer Res ; 21(1): 63, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101121

RESUMO

BACKGROUND: HER2-driven breast cancer is correlated with poor prognosis, especially during its later stages. Numerous studies have shown the importance of the integrin α3ß1 during the initiation and progression of breast cancer; however, its role in this disease is complex and often opposite during different stages and in different types of tumors. In this study, we aim to elucidate the role of integrin α3ß1 in a genetically engineered mouse model of HER2-driven mammary tumorigenesis. METHODS: To investigate the role of α3ß1 in HER2-driven tumorigenesis in vivo, we generated a HER2-driven MMTV-cNeu mouse model of mammary tumorigenesis with targeted deletion of Itga3 (Itga3 KO mice). We have further used several established triple-negative and HER2-overexpressing human mammary carcinoma cell lines and generated ITGA3-knockout cells to investigate the role of α3ß1 in vitro. Invasion of cells was assessed using Matrigel- and Matrigel/collagen I-coated Transwell assays under static or interstitial fluid flow conditions. The role of α3ß1 in initial adhesion to laminin and collagen was assessed using adhesion assays and immunofluorescence. RESULTS: Tumor onset in mice was independent of the presence of α3ß1. In contrast, the depletion of α3ß1 reduced the survival of mice and increased tumor growth and vascularization. Furthermore, Itga3 KO mice were significantly more likely to develop lung metastases and had an increased metastatic burden compared to WT mice. In vitro, the deletion of ITGA3 caused a significant increase in the cellular invasion of HER2-overexpressing SKBR3, AU565, and BT474 cells, but not of triple-negative MDA-MB-231. This invasion suppressing function of α3ß1 in HER2-driven cells depended on the composition of the extracellular matrix and the interstitial fluid flow. CONCLUSION: Downregulation of α3ß1 in a HER2-driven mouse model and in HER2-overexpressing human mammary carcinoma cells promotes progression and invasiveness of tumors. The invasion-suppressive role of α3ß1 was not observed in triple-negative mammary carcinoma cells, illustrating the tumor type-specific and complex function of α3ß1 in breast cancer.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Integrina alfa3beta1/deficiência , Receptor ErbB-2/genética , Animais , Biomarcadores Tumorais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Imunofenotipagem , Estimativa de Kaplan-Meier , Camundongos , Camundongos Knockout , Metástase Neoplásica , Receptor ErbB-2/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
2.
Stem Cell Reports ; 17(6): 1279-1288, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35561682

RESUMO

Human induced pluripotent stem cell (hiPSC)-derived hair-bearing skin organoids offer exciting new possibilities for modeling diseases like epidermolysis bullosa (EB). These inherited diseases affect 1 in 30,000 people worldwide and result from perturbed expression and/or structure of components of the epidermal-dermal junction (EDJ). To establish whether hiPSC-derived skin organoids might be able to capture salient features of EB, it is thus important to characterize their EDJ. Here, we report successful generation of hair-bearing skin organoids from two hiPSC lines that exhibited fully stratified interfollicular epidermis. Using immunofluorescence and electron microscopy, we showed that basal keratinocytes in organoids adhere to laminin-332 and type IV collagen-rich basement membrane via type I hemidesmosomes and integrin ß1-based adhesion complexes. Importantly, we demonstrated that EDJs in organoids are almost devoid of type VII collagen, a fibril that mediates anchorage of the epidermis to dermis. This should be considered when using skin organoids for EB modeling.


Assuntos
Epidermólise Bolhosa , Células-Tronco Pluripotentes Induzidas , Epiderme/metabolismo , Humanos , Queratinócitos , Organoides , Pele
3.
J Invest Dermatol ; 141(4): 732-741.e6, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32805217

RESUMO

Integrin α3ß1 plays a crucial role in tumor formation in the two-stage chemical carcinogenesis model (DMBA and TPA treatment). However, the mechanisms whereby the expression of α3ß1 influences key oncogenic drivers of this established model are not known yet. Using an in vivo mouse model with epidermal deletion of α3ß1 and in vitro Matrigel cultures of transformed keratinocytes, we demonstrate the central role of α3ß1 in promoting the activation of several protumorigenic signaling pathways during the initiation of DMBA/TPA‒driven tumorigenesis. In transformed keratinocytes, α3ß1-mediated focal adhesion kinase/Src activation leads to in vitro growth of spheroids and to strong Akt and STAT 3 activation when the α3ß1-binding partner tetraspanin CD151 is present to stabilize cell‒cell adhesion and promote Smad2 phosphorylation. Remarkably, α3ß1 and CD151 can support Akt and STAT 3 activity independently of α3ß1 ligation by laminin-332 and as such control the essential survival signals required for suprabasal keratin-10 expression during keratinocyte differentiation. These data demonstrate that α3ß1 together with CD151 regulate the signaling pathways that control the survival of differentiating keratinocytes and provide a mechanistic understanding of the essential role of α3ß1 in early stages of skin cancer development.


Assuntos
Transformação Celular Neoplásica/patologia , Integrina alfa3beta1/metabolismo , Queratinócitos/patologia , Neoplasias Experimentais/patologia , Neoplasias Cutâneas/patologia , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Animais , Carcinógenos/toxicidade , Adesão Celular/efeitos dos fármacos , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Transformação Celular Neoplásica/induzido quimicamente , Epiderme/efeitos dos fármacos , Epiderme/patologia , Humanos , Integrina alfa3beta1/genética , Queratinócitos/efeitos dos fármacos , Camundongos , Neoplasias Experimentais/induzido quimicamente , Transdução de Sinais , Neoplasias Cutâneas/induzido quimicamente , Esferoides Celulares , Acetato de Tetradecanoilforbol/toxicidade , Tetraspanina 24/metabolismo , Calinina
4.
Stem Cell Res ; 57: 102582, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34688992

RESUMO

Fibroblasts from two patients carrying a heterozygous mutation in the translation initiation codon (c.2 T > G) of the kelch-like protein 24 (KLHL24) gene were used to generate human induced pluripotent stem cells (hiPSCs), using non-integrating Sendai virus to deliver reprogramming factors. CRISPR-Cas9 editing was used for genetic correction of the mutation in the patient-hiPSCs. The top-predicted off-target sites were not altered. Patient and isogenic hiPSCs showed typical morphology, expressed pluripotency-associated markers, had the capacity for in vitro differentiation into the three germ layers and displayed a normal karyotype. These isogenic pairs will enable in vitro modelling of KLHL24-associated heart and skin conditions.

5.
Life Sci Alliance ; 3(7)2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32423907

RESUMO

Epidermal-specific deletion of integrin α3ß1 almost completely prevents the formation of papillomas during 7,12-Dimethylbenz[ a ]anthracene/12- O -tetradecanoylphorbol-13-acetate (DMBA/TPA) two-stage skin carcinogenesis. This dramatic decrease in tumorigenesis was thought to be due to an egress and premature differentiation of α3ß1-depleted hair bulge (HB) stem cells (SCs), previously considered to be the cancer cells-of-origin in the DMBA/TPA model. Using a reporter mouse line with inducible deletion of α3ß1 in HBs, we show that HB SCs remain confined to their niche regardless of the presence of α3ß1 and are largely absent from skin tumors. However, tumor formation was significantly decreased in mice deficient for α3ß1 in HB SCs. RNA sequencing of HB SCs isolated from short-term DMBA/TPA-treated skin showed α3ß1-dependent expression of the matricellular protein connective tissue growth factor (CCN2), which was confirmed in vitro, where CCN2 promoted colony formation and 3D growth of transformed keratinocytes. Together, these findings show that HBs contribute to skin tumorigenesis in an α3ß1-dependent manner and suggest a role of HB SCs in creating a permissive environment for tumor growth through the modulation of CCN2 secretion.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/genética , Regulação da Expressão Gênica , Folículo Piloso/citologia , Integrina alfa3beta1/metabolismo , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/metabolismo , Células-Tronco/metabolismo , Animais , Biomarcadores , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Epiderme/metabolismo , Epiderme/patologia , Imunofluorescência , Expressão Gênica , Imuno-Histoquímica , Imunofenotipagem , Integrina alfa3beta1/genética , Queratinócitos/metabolismo , Queratinócitos/patologia , Camundongos , Camundongos Knockout , Estadiamento de Neoplasias , Neoplasias Cutâneas/patologia
6.
Nat Commun ; 10(1): 3800, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31444332

RESUMO

E-cadherin (CDH1) is a master regulator of epithelial cell adherence junctions and a well-established tumor suppressor in Invasive Lobular Carcinoma (ILC). Intriguingly, somatic inactivation of E-cadherin alone in mouse mammary epithelial cells (MMECs) is insufficient to induce tumor formation. Here we show that E-cadherin loss induces extrusion of luminal MMECs to the basal lamina. Remarkably, E-cadherin-deficient MMECs can breach the basal lamina but do not disseminate into the surrounding fat pad. Basal lamina components laminin and collagen IV supported adhesion and survival of E-cadherin-deficient MMECs while collagen I, the principle component of the mammary stromal micro-environment did not. We uncovered that relaxation of actomyosin contractility mediates adhesion and survival of E-cadherin-deficient MMECs on collagen I, thereby allowing ILC development. Together, these findings unmask the direct consequences of E-cadherin inactivation in the mammary gland and identify aberrant actomyosin contractility as a critical barrier to ILC formation.


Assuntos
Actomiosina/metabolismo , Neoplasias da Mama/patologia , Caderinas/metabolismo , Carcinoma Lobular/patologia , Neoplasias Mamárias Experimentais/patologia , Animais , Neoplasias da Mama/genética , Caderinas/genética , Carcinoma Lobular/genética , Adesão Celular/genética , Sobrevivência Celular/genética , Células Cultivadas , Células Epiteliais , Feminino , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/genética , Camundongos , Camundongos Transgênicos , Cultura Primária de Células
7.
Matrix Biol ; 57-58: 213-243, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27562932

RESUMO

Integrins play an important role in cell adhesion by linking the cytoskeleton of cells to components in the extracellular matrix. In this capacity, integrins cooperate with different cell surface receptors, including growth factor receptors and G-protein coupled receptors, to regulate intracellular signaling pathways that control cell polarization, spreading, migration, survival, and gene expression. A distinct subfamily of molecules in the integrin family of adhesion receptors is formed by receptors that mediate cell adhesion to laminins, major components of the basement membrane that lie under clusters of cells or surround them, separating them from other cells and/or adjacent connective tissue. During the past decades, many studies have provided evidence for a role of laminin-binding integrins in tumorigenesis, and both tumor-promoting and suppressive activities have been identified. In this review we discuss the dual role of the laminin-binding integrins α3ß1 and α6ß4 in tumor development and progression, and examine the factors and mechanisms involved in these opposing effects.


Assuntos
Regulação Neoplásica da Expressão Gênica , Integrina alfa3beta1/genética , Integrina alfa6beta4/genética , Laminina/genética , Neoplasias/genética , Neovascularização Patológica/genética , Animais , Membrana Basal/metabolismo , Membrana Basal/patologia , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Adesão Celular , Movimento Celular , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Humanos , Integrina alfa3beta1/metabolismo , Integrina alfa6beta4/metabolismo , Laminina/metabolismo , Camundongos , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Ligação Proteica , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA