Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 310(9): L868-79, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26919897

RESUMO

Keratinocyte growth factor (KGF) is an epithelial mitogen that has been reported to protect the lungs from a variety of toxic and infectious insults. In prior studies we found that recombinant human KGF accelerates clearance of bacteria from the murine lung by augmenting the function of alveolar macrophages (AM). In this study we tested the hypothesis that endogenous KGF plays a role in the maintenance of innate pulmonary defense against gram-negative bacterial infections. KGF-deficient mice exhibited delayed clearance of Escherichia coli from the lungs, attenuated phagocytosis by AM, and decreased antimicrobial activity in bronchoalveolar lavage (BAL) fluid, due in part to reductions in levels of surfactant protein A, surfactant protein D, and lysozyme. These immune deficits were accompanied by lower alveolar type II epithelial cell counts and reduced alveolar type II epithelial cell expression of collectin and lysozyme genes on a per cell basis. No significant between-group differences were detected in selected inflammatory cytokines or BAL inflammatory cell populations at baseline or after bacterial challenge in the wild-type and KGF-deficient mice. A single intranasal dose of recombinant human KGF reversed defects in bacterial clearance, AM function, and BAL fluid antimicrobial activity. We conclude that KGF supports alveolar innate immune defense through maintenance of alveolar antimicrobial protein levels and functions of AM. Together these data demonstrate a role for endogenous KGF in maintenance of normal pulmonary innate immune function.


Assuntos
Infecções por Escherichia coli/imunologia , Fator 7 de Crescimento de Fibroblastos/fisiologia , Imunidade Inata , Macrófagos Alveolares/imunologia , Pneumonia Bacteriana/imunologia , Animais , Células Cultivadas , Colectinas/genética , Colectinas/metabolismo , Infecções por Escherichia coli/metabolismo , Feminino , Expressão Gênica , Humanos , Macrófagos Alveolares/microbiologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muramidase/genética , Muramidase/metabolismo , Pneumonia Bacteriana/metabolismo , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/microbiologia
2.
J Trauma Acute Care Surg ; 97(5): 753-763, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38745347

RESUMO

BACKGROUND: Patients with type O blood may have an increased risk of hemorrhagic complications because of lower baseline levels of von Willebrand factor and factor VIII, but the transition to a mortality difference in trauma is less clear. We hypothesized that type O trauma patients will have differential proteomic and metabolomic signatures in response to trauma beyond von Willebrand factor and factor VIII alone. METHODS: Patients meeting the highest level of trauma activation criteria were prospectively enrolled. Blood samples were collected upon arrival to the emergency department. Proteomic and metabolomic (multiomics) analyses of these samples were performed using liquid chromatography-mass spectrometry. Demographic, clinical, and multiomics data were compared between patients with type O blood versus all other patients. RESULTS: There were 288 patients with multiomics data; 146 (51%) had type O blood. Demographics, injury patterns, and initial vital signs and laboratory measurements were not different between groups. Type O patients had increased lengths of stay (7 vs. 6 days, p = 0.041) and a trend toward decreased mortality secondary to traumatic brain injury compared with other causes (traumatic brain injury, 44.4% vs. 87.5%; p = 0.055). Type O patients had decreased levels of mannose-binding lectin and mannose-binding lectin-associated serine proteases 1 and 2, which are required for the initiation of the lectin pathway of complement activation. Type O patients also had metabolite differences signifying energy metabolism and mitochondrial dysfunction. CONCLUSION: Blood type O patients have a unique multiomics signature, including decreased levels of proteins required to activate the lectin complement pathway. This may lead to overall decreased levels of complement activation and decreased systemic inflammation in the acute phase, possibly leading to a survival advantage, especially in traumatic brain injury. However, this may later impair healing. Future work will need to confirm these associations, and animal studies are needed to test therapeutic targets. LEVEL OF EVIDENCE: Prognostic and Epidemiological; Level IV.


Assuntos
Proteômica , Ferimentos e Lesões , Humanos , Masculino , Feminino , Adulto , Estudos Prospectivos , Pessoa de Meia-Idade , Ferimentos e Lesões/sangue , Ferimentos e Lesões/complicações , Ferimentos e Lesões/mortalidade , Sistema ABO de Grupos Sanguíneos/sangue , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/mortalidade , Lesões Encefálicas Traumáticas/complicações , Metabolômica , Lectina de Ligação a Manose da Via do Complemento , Multiômica
3.
J Trauma Acute Care Surg ; 97(5): 738-746, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38764145

RESUMO

BACKGROUND: Platelets are well known for their roles in hemostasis, but they also play a key role in thromboinflammatory pathways by regulating endothelial health, stimulating angiogenesis, and mediating host defense through both contact dependent and independent signaling. When activated, platelets degranulate releasing multiple active substances. We hypothesized that the soluble environment formed by trauma platelet releasates (TPR) attenuates thromboinflammation via mitigation of trauma induced endothelial permeability and metabolomic reprogramming. METHODS: Blood was collected from injured and healthy patients to generate platelet releasates and plasma in parallel. Permeability of endothelial cells when exposed to TPR and plasma (TP) was assessed via resistance measurement by electric cell-substrate impedance sensing (ECIS). Endothelial cells treated with TPR and TP were subjected to mass spectrometry-based metabolomics. RESULTS: TP increased endothelial permeability, whereas TPR decreased endothelial permeability when compared with untreated cells. When TP and TPR were mixed ex vivo, TPR mitigated TP-induced permeability, with significant increase in AUC compared with TP alone. Metabolomics of TPR and TP demonstrated disrupted redox reactions and anti-inflammatory mechanisms. CONCLUSION: Trauma platelet releasates provide endothelial barrier protection against TP-induced endothelial permeability. Our findings highlight a potential beneficial action of activated platelets on the endothelium in injured patients through disrupted redox reactions and increased antioxidants. Our findings support that soluble signaling from platelet degranulation may mitigate the endotheliopathy of trauma. The clinical implications of this are that activated platelets may prove a promising therapeutic target in the complex integration of thrombosis, endotheliopathy, and inflammation in trauma.


Assuntos
Plaquetas , Ferimentos e Lesões , Humanos , Plaquetas/metabolismo , Ferimentos e Lesões/complicações , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/sangue , Masculino , Adulto , Feminino , Ativação Plaquetária/fisiologia , Endotélio Vascular/metabolismo , Metabolômica/métodos , Células Endoteliais/metabolismo
4.
IBRO Neurosci Rep ; 10: 31-41, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33861814

RESUMO

It has been demonstrated that adult born granule cells are generated after traumatic brain injury (TBI). There is evidence that these newly generated neurons are aberrant and are poised to contribute to poor cognitive function after TBI. Yet, there is also evidence that these newly generated neurons are important for cognitive recovery. Pattern separation is a cognitive task known to be dependent on the function of adult generated granule cells. Performance on this task and the relation to dentate gyrus dysfunction after TBI has not been previously studied. Here we subjected Sprague Dawley rats to lateral fluid percussion injury or sham and tested them on the dentate gyrus dependent task pattern separation. At 2 weeks after injury, we examined common markers of dentate gyrus function such as GSK3ß phosphorylation, Ki-67 immunohistochemistry, and generation of adult born granule cells. We found that injured animals have deficits in pattern separation. We additionally found a decrease in proliferative capacity at 2 weeks indicated by decreased phosphorylation of GSK3ß and Ki-67 immunopositivity as compared to sham animals. Lastly we found an increase in numbers of new neurons generated during the pattern separation task. These findings provide evidence that dentate gyrus dysfunction may be an important contributor to TBI pathology.

5.
Exp Hematol ; 56: 16-30, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28867537

RESUMO

Inflammation-mediated impairment of erythropoiesis plays a central role in the development of the anemia of critical illness (ACI). ACI develops despite elevation of endogenous erythropoietin (EPO), does not respond to exogenous erythropoietin (EPO) supplementation, and contributes significantly to transfusion requirements in burned patients. We have reported previously that the reduction of red blood cell mass in the bone marrow of a burn-injured ACI mouse model is granulocyte colony-stimulating factor (G-CSF) dependent. Given that elevated G-CSF levels also have been associated with lower hemoglobin levels and increased transfusion requirements in trauma victims, we postulated that G-CSF mediates postburn EPO resistance. In ACI mice, we found that bone marrow erythroid differentiation, viability, and proliferation are impaired after thermal injury of the skin. These changes in the marrow were associated with attenuated phosphorylation of known EPO-responsive signaling nodes, signal transducer and activator of transcription 5 (STAT5) Y694 and STAT3 S727, in bone marrow erythroid cells and developed despite highly elevated levels of endogenous EPO. Severely blunted STAT5 Y694 phosphorylation in bone marrow erythroid cells after exogenous EPO supplementation confirmed that EPO signaling was impaired in ACI mice. Importantly, parenteral administration of anti-G-CSF largely rescued postburn bone marrow erythroid differentiation arrest and EPO signaling in erythroid cells. Together, these data provide strong evidence for a role for G-CSF in the development of ACI after burn injury through suppression of EPO signaling in bone marrow erythroid cells.


Assuntos
Anemia/metabolismo , Queimaduras/metabolismo , Diferenciação Celular , Células Eritroides/metabolismo , Eritropoetina/metabolismo , Fator Estimulador de Colônias de Granulócitos/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Pele , Anemia/etiologia , Anemia/patologia , Animais , Queimaduras/complicações , Queimaduras/patologia , Células Eritroides/patologia , Feminino , Camundongos , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA