Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cytokine ; 164: 156139, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36738525

RESUMO

BACKGROUND: Bone marrow mesenchymal stem cells (BMSCs) are an important source of seed cells for regenerative medicine and tissue engineering therapy. BMSCs have multiple differentiation potentials and can release paracrine factors to facilitate tissue repair. Although the role of the osteogenic differentiation of BMSCs has been fully confirmed, the function and mechanism of BMSC paracrine factors in bone repair are still largely unclear. This study aimed to determine the roles of transforming growth factor beta-1 (TGF-ß1) produced by BMSCs in bone tissue repair. METHODS: To confirm our hypothesis, we used a Transwell system to coculture hBMSCs and human osteoblast-like cells without contact, which could not only avoid the interference of the osteogenic differentiation of hBMSCs but also establish the cell-cell relationship between hBMSCs and human osteoblast-like cells and provide stable paracrine substances. In the transwell coculture system, alkaline phosphatase activity, mineralized nodule formation, cell migration and chemotaxis analysis assays were conducted. RESULTS: Osteogenesis, migration and chemotaxis of osteoblast-like cells were regulated by BMSCs in a paracrine manner via the upregulation of osteogenic and migration-associated genes. A TGF-ß receptor I inhibitor (LY3200882) significantly antagonized BMSC-induced biological activity and related gene expression in osteoblast-like cells. Interestingly, coculture with osteoblast-like cells significantly increased the production of TGF-ß1 by BMSCs, and there was potential intercellular communication between BMSCs and osteoblast-like cells. CONCLUSIONS: Our findings provide evidence that the biological mechanism of BMSC-produced TGF-ß1 promotes bone regeneration and repair, providing a theoretical basis and new directions for the application of BMSC transplantation in the treatment of osteonecrosis and bone injury.


Assuntos
Células-Tronco Mesenquimais , Fator de Crescimento Transformador beta1 , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Osteogênese , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Células da Medula Óssea/metabolismo
2.
Eur J Oral Sci ; 126(5): 433-436, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30105814

RESUMO

The glycosaminoglycan (GAG) chains attached to the core proteins of proteoglycans exert multiple roles, such as enriching signal molecules and regulating the binding of ligands to the corresponding receptors. A newly identified kinase - family with sequence similarity 20 member B (FAM20B) - is essential for the formation of GAG chains. The FAM20B protein phosphorylates the initial xylose on the side chain of a serine residue in the protein. Although the GAG chains of proteoglycans are believed to be indispensable during craniofacial development, there are few reports on their exact functions in craniofacial organogenesis. In this study, by mating Wnt1-cre mice with Fam20b-floxed mice (Fam20bflox/flox), we created Wnt1-Cre;Fam20bflox/flox mice in which Fam20b is ablated in the neural crest-derived mesenchyme. The Wnt1-Cre;Fam20bflox/flox mice died immediately after birth because of complete cleft palates. In addition to cleft palate, Wnt1-Cre;Fam20bflox/flox mice also manifested tongue elevation, micrognathia, microcephaly, suture widening, and reduced mineralization in the calvaria, facial bones, and temporomandibular joint. These findings indicate that the proteoglycans formed through the catalysis of FAM20B are essential for the morphogenesis and mineralization of the craniofacial complex.


Assuntos
Anormalidades Craniofaciais/etiologia , Anormalidades Craniofaciais/metabolismo , Morfogênese/fisiologia , Crista Neural/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteoglicanas/metabolismo , Animais , Biomineralização , Calcificação Fisiológica/fisiologia , Fissura Palatina , Anormalidades Craniofaciais/patologia , Ossos Faciais , Glicosaminoglicanos/metabolismo , Integrases , Mesoderma/fisiologia , Camundongos , Microcefalia/metabolismo , Micrognatismo/metabolismo , Fosforilação , Crânio/metabolismo , Articulação Temporomandibular , Xilose/metabolismo
3.
Regen Biomater ; 11: rbae057, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38854680

RESUMO

The joint prosthesis plays a vital role in the outcome of total hip arthroplasty. The key factors that determine the performance of joint prostheses are the materials used and the structural design of the prosthesis. This study aimed to fabricate a porous tantalum (Ta) hip prosthesis using selective laser melting (SLM) technology. The feasibility of SLM Ta use in hip prosthesis was verified by studying its chemical composition, metallographic structure and mechanical properties. In vitro experiments proved that SLM Ta exhibited better biological activities in promoting osteogenesis and inhibiting inflammation than SLM Ti6Al4V. Then, the topological optimization design of the femoral stem of the SLM Ta hip prosthesis was carried out by finite element simulation, and the fatigue performance of the optimized prosthesis was tested to verify the biomechanical safety of the prosthesis. A porous Ta acetabulum cup was also designed and fabricated using SLM. Its mechanical properties were then studied. Finally, clinical trials were conducted to verify the clinical efficacy of the SLM Ta hip prosthesis. The porous structure could reduce the weight of the prosthesis and stress shielding and avoid bone resorption around the prosthesis. In addition, anti-infection drugs can also be loaded into the pores for infection treatment. The acetabular cup can be custom-designed based on the severity of bone loss on the acetabular side, and the integrated acetabular cup can repair the acetabular bone defect while achieving the function of the acetabular cup.

4.
World J Stem Cells ; 16(2): 191-206, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38455098

RESUMO

BACKGROUND: Knee osteoarthritis (KOA) is a common orthopedic condition with an uncertain etiology, possibly involving genetics and biomechanics. Factors like changes in chondrocyte microenvironment, oxidative stress, inflammation, and immune responses affect KOA development. Early-stage treatment options primarily target symptom relief. Mesenchymal stem cells (MSCs) show promise for treatment, despite challenges. Recent research highlights microRNAs (miRNAs) within MSC-released extracellular vesicles that can potentially promote cartilage regeneration and hinder KOA progression. This suggests exosomes (Exos) as a promising avenue for future treatment. While these findings emphasize the need for effective KOA progression management, further safety and efficacy validation for Exos is essential. AIM: To explore miR-29a's role in KOA, we'll create miR-29a-loaded vesicles, testing for early treatment in rat models. METHODS: Extraction of bone marrow MSC-derived extracellular vesicles, preparation of engineered vesicles loaded with miR-29a using ultrasonication, and identification using quantitative reverse transcription polymerase chain reaction; after establishing a rat model of KOA, rats were randomly divided into three groups: Blank control group injected with saline, normal extracellular vesicle group injected with normal extracellular vesicle suspension, and engineered extracellular vesicle group injected with engineered extracellular vesicle suspension. The three groups were subjected to general behavioral observation analysis, imaging evaluation, gross histological observation evaluation, histological detection, and immunohistochemical detection to compare and evaluate the progress of various forms of arthritis. RESULTS: General behavioral observation results showed that the extracellular vesicle group and engineered extracellular vesicle group had better performance in all four indicators of pain, gait, joint mobility, and swelling compared to the blank control group. Additionally, the engineered extracellular vesicle group had better pain relief at 4 wk and better knee joint mobility at 8 wk compared to the normal extracellular vesicle group. Imaging examination results showed that the blank control group had the fastest progression of arthritis, the normal extracellular vesicle group had a relatively slower progression, and the engineered extracellular vesicle group had the slowest progression. Gross histological observation results showed that the blank control group had the most obvious signs of arthritis, the normal extracellular vesicle group showed signs of arthritis, and the engineered extracellular vesicle group showed no significant signs of arthritis. Using the Pelletier gross score evaluation, the engineered extracellular vesicle group had the slowest progression of arthritis. Results from two types of staining showed that the articular cartilage of rats in the normal extracellular vesicle and engineered extracellular vesicle groups was significantly better than that of the blank control group, and the engineered extracellular vesicle group had the best cartilage cell and joint surface condition. Immunohistochemical detection of type II collagen and proteoglycan showed that the extracellular matrix of cartilage cells in the normal extracellular vesicle and engineered extracellular vesicle groups was better than that of the blank control group. Compared to the normal extracellular vesicle group, the engineered extracellular vesicle group had a better regulatory effect on the extracellular matrix of cartilage cells. CONCLUSION: Engineered Exos loaded with miR-29a can exert anti-inflammatory effects and maintain extracellular matrix stability, thereby protecting articular cartilage, and slowing the progression of KOA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA