Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(5): 923-939.e14, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36868214

RESUMO

We conduct high coverage (>30×) whole-genome sequencing of 180 individuals from 12 indigenous African populations. We identify millions of unreported variants, many predicted to be functionally important. We observe that the ancestors of southern African San and central African rainforest hunter-gatherers (RHG) diverged from other populations >200 kya and maintained a large effective population size. We observe evidence for ancient population structure in Africa and for multiple introgression events from "ghost" populations with highly diverged genetic lineages. Although currently geographically isolated, we observe evidence for gene flow between eastern and southern Khoesan-speaking hunter-gatherer populations lasting until ∼12 kya. We identify signatures of local adaptation for traits related to skin color, immune response, height, and metabolic processes. We identify a positively selected variant in the lightly pigmented San that influences pigmentation in vitro by regulating the enhancer activity and gene expression of PDPK1.


Assuntos
Aclimatação , Pigmentação da Pele , Humanos , Sequenciamento Completo do Genoma , Densidade Demográfica , África , Proteínas Quinases Dependentes de 3-Fosfoinositídeo
2.
Proc Natl Acad Sci U S A ; 119(21): e2123000119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35580180

RESUMO

Human genomic diversity has been shaped by both ancient and ongoing challenges from viruses. The current coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a devastating impact on population health. However, genetic diversity and evolutionary forces impacting host genes related to SARS-CoV-2 infection are not well understood. We investigated global patterns of genetic variation and signatures of natural selection at host genes relevant to SARS-CoV-2 infection (angiotensin converting enzyme 2 [ACE2], transmembrane protease serine 2 [TMPRSS2], dipeptidyl peptidase 4 [DPP4], and lymphocyte antigen 6 complex locus E [LY6E]). We analyzed data from 2,012 ethnically diverse Africans and 15,977 individuals of European and African ancestry with electronic health records and integrated with global data from the 1000 Genomes Project. At ACE2, we identified 41 nonsynonymous variants that were rare in most populations, several of which impact protein function. However, three nonsynonymous variants (rs138390800, rs147311723, and rs145437639) were common among central African hunter-gatherers from Cameroon (minor allele frequency 0.083 to 0.164) and are on haplotypes that exhibit signatures of positive selection. We identify signatures of selection impacting variation at regulatory regions influencing ACE2 expression in multiple African populations. At TMPRSS2, we identified 13 amino acid changes that are adaptive and specific to the human lineage compared with the chimpanzee genome. Genetic variants that are targets of natural selection are associated with clinical phenotypes common in patients with COVID-19. Our study provides insights into global variation at host genes related to SARS-CoV-2 infection, which have been shaped by natural selection in some populations, possibly due to prior viral infections.


Assuntos
COVID-19 , África , Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Variação Genética , Humanos , Fenótipo , SARS-CoV-2/genética , Seleção Genética
3.
Mol Biol Evol ; 39(10)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36026493

RESUMO

The alcohol dehydrogenase (ADH) family of genes encodes enzymes that catalyze the metabolism of ethanol into acetaldehyde. Nucleotide variation in ADH genes can affect the catalytic properties of these enzymes and is associated with a variety of traits, including alcoholism and cancer. Some ADH variants, including the ADH1B*48His (rs1229984) mutation in the ADH1B gene, reduce the risk of alcoholism and are under positive selection in multiple human populations. The advent of Neolithic agriculture and associated increase in fermented foods and beverages is hypothesized to have been a selective force acting on such variants. However, this hypothesis has not been tested in populations outside of Asia. Here, we use genome-wide selection scans to show that the ADH gene region is enriched for variants showing strong signals of positive selection in multiple Afroasiatic-speaking, agriculturalist populations from Ethiopia, and that this signal is unique among sub-Saharan Africans. We also observe strong selection signals at putatively functional variants in nearby lipid metabolism genes, which may influence evolutionary dynamics at the ADH region. Finally, we show that haplotypes carrying these selected variants were introduced into Northeast Africa from a West-Eurasian source within the last ∼2,000 years and experienced positive selection following admixture. These selection signals are not evident in nearby, genetically similar populations that practice hunting/gathering or pastoralist subsistence lifestyles, supporting the hypothesis that the emergence of agriculture shapes patterns of selection at ADH genes. Together, these results enhance our understanding of how adaptations to diverse environments and diets have influenced the African genomic landscape.


Assuntos
Álcool Desidrogenase , Alcoolismo , Acetaldeído , Agricultura , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Alcoolismo/genética , Etanol/metabolismo , Etiópia , Humanos , Nucleotídeos , Seleção Genética
4.
Hum Mol Genet ; 30(R1): R98-R109, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33847744

RESUMO

Lactase persistence (LP) is a genetically-determined trait that is prevalent in African, European and Arab populations with a tradition of animal herding and milk consumption. To date, genetic analyses have identified several common variants that are associated with LP. Furthermore, data have indicated that these functional alleles likely have been maintained in pastoralist populations due to the action of recent selection, exemplifying the ongoing evolution of anatomically modern humans. Additionally, demographic history has also played a role in the geographic distribution of LP and associated alleles in Africa. In particular, the migration of ancestral herders and their subsequent admixture with local populations were integral to the spread of LP alleles and the culture of pastoralism across the continent. The timing of these demographic events was often correlated with known major environmental changes and/or the ability of domesticated cattle to resist/avoid infectious diseases. This review summarizes recent advances in our understanding of the genetic basis and evolutionary history of LP, as well as the factors that influenced the origin and spread of pastoralism in Africa.


Assuntos
Animais Domésticos/genética , População Negra/genética , Resistência à Doença , Lactase/genética , África , Animais , Bovinos , Demografia , Evolução Molecular , Migração Humana , Humanos , Locos de Características Quantitativas
5.
J Virol ; 95(21): e0081721, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34406857

RESUMO

Redondoviridae is a newly established family of circular Rep-encoding single-stranded (CRESS) DNA viruses found in the human ororespiratory tract. Redondoviruses were previously found in ∼15% of respiratory specimens from U.S. urban subjects; levels were elevated in individuals with periodontitis or critical illness. Here, we report higher redondovirus prevalence in saliva samples: four rural African populations showed 61 to 82% prevalence, and an urban U.S. population showed 32% prevalence. Longitudinal, limiting-dilution single-genome sequencing revealed diverse strains of both redondovirus species (Brisavirus and Vientovirus) in single individuals, persistence over time, and evidence of intergenomic recombination. Computational analysis of viral genomes identified a recombination hot spot associated with a conserved potential DNA stem-loop structure. To assess the possible role of this site in recombination, we carried out in vitro studies which showed that this potential stem-loop was cleaved by the virus-encoded Rep protein. In addition, in reconstructed reactions, a Rep-DNA covalent intermediate was shown to mediate DNA strand transfer at this site. Thus, redondoviruses are highly prevalent in humans, found in individuals on multiple continents, heterogeneous even within individuals and encode a Rep protein implicated in facilitating recombination. IMPORTANCERedondoviridae is a recently established family of DNA viruses predominantly found in the human respiratory tract and associated with multiple clinical conditions. In this study, we found high redondovirus prevalence in saliva from urban North American individuals and nonindustrialized African populations in Botswana, Cameroon, Ethiopia, and Tanzania. Individuals on both continents harbored both known redondovirus species. Global prevalence of both species suggests that redondoviruses have long been associated with humans but have remained undetected until recently due to their divergent genomes. By sequencing single redondovirus genomes in longitudinally sampled humans, we found that redondoviruses persisted over time within subjects and likely evolve by recombination. The Rep protein encoded by redondoviruses catalyzes multiple reactions in vitro, consistent with a role in mediating DNA replication and recombination. In summary, we identify high redondovirus prevalence in humans across multiple continents, longitudinal heterogeneity and persistence, and potential mechanisms of redondovirus evolution by recombination.


Assuntos
Infecções por Vírus de DNA/virologia , Vírus de DNA/classificação , Vírus de DNA/genética , Vírus de DNA/metabolismo , Boca/virologia , Sistema Respiratório/virologia , Saliva/virologia , África/epidemiologia , Biodiversidade , Estado Terminal , Infecções por Vírus de DNA/epidemiologia , Proteínas de Ligação a DNA/metabolismo , Evolução Molecular , Genoma Viral , Humanos , Metagenômica , Periodontite/virologia , Filogenia , Prevalência , População Rural , Estados Unidos/epidemiologia , Proteínas Virais/metabolismo
6.
Proc Natl Acad Sci U S A ; 116(10): 4166-4175, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30782801

RESUMO

Anatomically modern humans arose in Africa ∼300,000 years ago, but the demographic and adaptive histories of African populations are not well-characterized. Here, we have generated a genome-wide dataset from 840 Africans, residing in western, eastern, southern, and northern Africa, belonging to 50 ethnicities, and speaking languages belonging to four language families. In addition to agriculturalists and pastoralists, our study includes 16 populations that practice, or until recently have practiced, a hunting-gathering (HG) lifestyle. We observe that genetic structure in Africa is broadly correlated not only with geography, but to a lesser extent, with linguistic affiliation and subsistence strategy. Four East African HG (EHG) populations that are geographically distant from each other show evidence of common ancestry: the Hadza and Sandawe in Tanzania, who speak languages with clicks classified as Khoisan; the Dahalo in Kenya, whose language has remnant clicks; and the Sabue in Ethiopia, who speak an unclassified language. Additionally, we observed common ancestry between central African rainforest HGs and southern African San, the latter of whom speak languages with clicks classified as Khoisan. With the exception of the EHG, central African rainforest HGs, and San, other HG groups in Africa appear genetically similar to neighboring agriculturalist or pastoralist populations. We additionally demonstrate that infectious disease, immune response, and diet have played important roles in the adaptive landscape of African history. However, while the broad biological processes involved in recent human adaptation in Africa are often consistent across populations, the specific loci affected by selective pressures more often vary across populations.


Assuntos
População Negra/genética , Etnicidade/genética , Variação Genética , Genoma Humano , Idioma , Filogenia , Feminino , Humanos , Masculino
7.
Hum Mol Genet ; 25(11): 2324-2330, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26936823

RESUMO

Leukocyte telomere length (LTL), which reflects telomere length in other somatic tissues, is a complex genetic trait. Eleven SNPs have been shown in genome-wide association studies to be associated with LTL at a genome-wide level of significance within cohorts of European ancestry. It has been observed that LTL is longer in African Americans than in Europeans. The underlying reason for this difference is unknown. Here we show that LTL is significantly longer in sub-Saharan Africans than in both Europeans and African Americans. Based on the 11 LTL-associated alleles and genetic data in phase 3 of the 1000 Genomes Project, we show that the shifts in allele frequency within Europe and between Europe and Africa do not fit the pattern expected by neutral genetic drift. Our findings suggest that differences in LTL within Europeans and between Europeans and Africans is influenced by polygenic adaptation and that differences in LTL between Europeans and Africans might explain, in part, ethnic differences in risks for human diseases that have been linked to LTL.


Assuntos
Leucócitos/citologia , Homeostase do Telômero/genética , Encurtamento do Telômero/genética , Telômero/genética , Adolescente , Adulto , Negro ou Afro-Americano/genética , Idoso , Idoso de 80 Anos ou mais , Alelos , População Negra/genética , Criança , Feminino , Deriva Genética , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , População Branca/genética
8.
Am J Hum Genet ; 94(4): 496-510, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24630847

RESUMO

In humans, the ability to digest lactose, the sugar in milk, declines after weaning because of decreasing levels of the enzyme lactase-phlorizin hydrolase, encoded by LCT. However, some individuals maintain high enzyme amounts and are able to digest lactose into adulthood (i.e., they have the lactase-persistence [LP] trait). It is thought that selection has played a major role in maintaining this genetically determined phenotypic trait in different human populations that practice pastoralism. To identify variants associated with the LP trait and to study its evolutionary history in Africa, we sequenced MCM6 introns 9 and 13 and ~2 kb of the LCT promoter region in 819 individuals from 63 African populations and in 154 non-Africans from nine populations. We also genotyped four microsatellites in an ~198 kb region in a subset of 252 individuals to reconstruct the origin and spread of LP-associated variants in Africa. Additionally, we examined the association between LP and genetic variability at candidate regulatory regions in 513 individuals from eastern Africa. Our analyses confirmed the association between the LP trait and three common variants in intron 13 (C-14010, G-13907, and G-13915). Furthermore, we identified two additional LP-associated SNPs in intron 13 and the promoter region (G-12962 and T-956, respectively). Using neutrality tests based on the allele frequency spectrum and long-range linkage disequilibrium, we detected strong signatures of recent positive selection in eastern African populations and the Fulani from central Africa. In addition, haplotype analysis supported an eastern African origin of the C-14010 LP-associated mutation in southern Africa.


Assuntos
Lactase/metabolismo , África , Humanos , Íntrons , Lactase-Florizina Hidrolase/genética , Lactase-Florizina Hidrolase/metabolismo , Repetições de Microssatélites/genética , Componente 6 do Complexo de Manutenção de Minicromossomo/genética , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas
9.
Am J Hum Genet ; 93(1): 54-66, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23768513

RESUMO

Disease susceptibility can arise as a consequence of adaptation to infectious disease. Recent findings have suggested that higher rates of chronic kidney disease (CKD) in individuals with recent African ancestry might be attributed to two risk alleles (G1 and G2) at the serum-resistance-associated (SRA)-interacting-domain-encoding region of APOL1. These two alleles appear to have arisen adaptively, possibly as a result of their protective effects against human African trypanosomiasis (HAT), or African sleeping sickness. In order to explore the distribution of potential functional variation at APOL1, we studied nucleotide variation in 187 individuals across ten geographically and genetically diverse African ethnic groups with exposure to two Trypanosoma brucei subspecies that cause HAT. We observed unusually high levels of nonsynonymous polymorphism in the regions encoding the functional domains that are required for lysing parasites. Whereas allele frequencies of G2 were similar across all populations (3%-8%), the G1 allele was only common in the Yoruba (39%). Additionally, we identified a haplotype (termed G3) that contains a nonsynonymous change at the membrane-addressing-domain-encoding region of APOL1 and is present in all populations except for the Yoruba. Analyses of long-range patterns of linkage disequilibrium indicate evidence of recent selection acting on the G3 haplotype in Fulani from Cameroon. Our results indicate that the G1 and G2 variants in APOL1 are geographically restricted and that there might be other functional variants that could play a role in HAT resistance and CKD risk in African populations.


Assuntos
Apolipoproteínas/genética , População Negra/genética , Lipoproteínas HDL/genética , Polimorfismo de Nucleotídeo Único , Seleção Genética , Adaptação Biológica , África , Alelos , Apolipoproteína L1 , Resistência à Doença/genética , Evolução Molecular , Éxons , Frequência do Gene , Predisposição Genética para Doença , Genética Populacional/métodos , Haplótipos , Humanos , Desequilíbrio de Ligação , Dados de Sequência Molecular , Insuficiência Renal Crônica/etnologia , Insuficiência Renal Crônica/genética , Fatores de Risco , Tripanossomíase Africana/etnologia , Tripanossomíase Africana/genética
10.
Nat Genet ; 39(1): 31-40, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17159977

RESUMO

A SNP in the gene encoding lactase (LCT) (C/T-13910) is associated with the ability to digest milk as adults (lactase persistence) in Europeans, but the genetic basis of lactase persistence in Africans was previously unknown. We conducted a genotype-phenotype association study in 470 Tanzanians, Kenyans and Sudanese and identified three SNPs (G/C-14010, T/G-13915 and C/G-13907) that are associated with lactase persistence and that have derived alleles that significantly enhance transcription from the LCT promoter in vitro. These SNPs originated on different haplotype backgrounds from the European C/T-13910 SNP and from each other. Genotyping across a 3-Mb region demonstrated haplotype homozygosity extending >2.0 Mb on chromosomes carrying C-14010, consistent with a selective sweep over the past approximately 7,000 years. These data provide a marked example of convergent evolution due to strong selective pressure resulting from shared cultural traits-animal domestication and adult milk consumption.


Assuntos
Adaptação Biológica , Lactase/genética , Lactose/metabolismo , Adulto , África , Animais , Células CACO-2 , Europa (Continente) , Evolução Molecular , Frequência do Gene , Haplótipos , Humanos , Lactose/sangue , Teste de Tolerância a Lactose , Leite/metabolismo , Polimorfismo de Nucleotídeo Único , Seleção Genética
11.
Mol Biol Evol ; 31(2): 288-302, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24177185

RESUMO

Bitter taste perception influences human nutrition and health, and the genetic variation underlying this trait may play a role in disease susceptibility. To better understand the genetic architecture and patterns of phenotypic variability of bitter taste perception, we sequenced a 996 bp region, encompassing the coding exon of TAS2R16, a bitter taste receptor gene, in 595 individuals from 74 African populations and in 94 non-Africans from 11 populations. We also performed genotype-phenotype association analyses of threshold levels of sensitivity to salicin, a bitter anti-inflammatory compound, in 296 individuals from Central and East Africa. In addition, we characterized TAS2R16 mutants in vitro to investigate the effects of polymorphic loci identified at this locus on receptor function. Here, we report striking signatures of positive selection, including significant Fay and Wu's H statistics predominantly in East Africa, indicating strong local adaptation and greater genetic structure among African populations than expected under neutrality. Furthermore, we observed a "star-like" phylogeny for haplotypes with the derived allele at polymorphic site 516 associated with increased bitter taste perception that is consistent with a model of selection for "high-sensitivity" variation. In contrast, haplotypes carrying the "low-sensitivity" ancestral allele at site 516 showed evidence of strong purifying selection. We also demonstrated, for the first time, the functional effect of nonsynonymous variation at site 516 on salicin phenotypic variance in vivo in diverse Africans and showed that most other nonsynonymous substitutions have weak or no effect on cell surface expression in vitro, suggesting that one main polymorphism at TAS2R16 influences salicin recognition. Additionally, we detected geographic differences in levels of bitter taste perception in Africa not previously reported and infer an East African origin for high salicin sensitivity in human populations.


Assuntos
Álcoois Benzílicos/química , População Negra/genética , Glucosídeos/química , Receptores Acoplados a Proteínas G/genética , Paladar/genética , Alelos , Evolução Molecular , Éxons , Estudos de Associação Genética , Variação Genética , Haplótipos , Humanos , Malária/epidemiologia , Malária/genética , Modelos Genéticos , Filogenia , Filogeografia , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G/metabolismo , Seleção Genética
12.
Am J Hum Genet ; 88(6): 741-754, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21664997

RESUMO

Malaria has been a very strong selection pressure in recent human evolution, particularly in Africa. Of the one million deaths per year due to malaria, more than 90% are in sub-Saharan Africa, a region with high levels of genetic variation and population substructure. However, there have been few studies of nucleotide variation at genetic loci that are relevant to malaria susceptibility across geographically and genetically diverse ethnic groups in Africa. Invasion of erythrocytes by Plasmodium falciparum parasites is central to the pathology of malaria. Glycophorin A (GYPA) and B (GYPB), which determine MN and Ss blood types, are two major receptors that are expressed on erythrocyte surfaces and interact with parasite ligands. We analyzed nucleotide diversity of the glycophorin gene family in 15 African populations with different levels of malaria exposure. High levels of nucleotide diversity and gene conversion were found at these genes. We observed divergent patterns of genetic variation between these duplicated genes and between different extracellular domains of GYPA. Specifically, we identified fixed adaptive changes at exons 3-4 of GYPA. By contrast, we observed an allele frequency spectrum skewed toward a significant excess of intermediate-frequency alleles at GYPA exon 2 in many populations; the degree of spectrum distortion is correlated with malaria exposure, possibly because of the joint effects of gene conversion and balancing selection. We also identified a haplotype causing three amino acid changes in the extracellular domain of glycophorin B. This haplotype might have evolved adaptively in five populations with high exposure to malaria.


Assuntos
Doenças Endêmicas , Predisposição Genética para Doença , Glicoforinas/genética , Sistema do Grupo Sanguíneo MNSs/genética , Malária Falciparum/genética , Seleção Genética , África Subsaariana , Substituição de Aminoácidos , Animais , Sequência de Bases , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Etnicidade/genética , Éxons , Loci Gênicos , Glicoforinas/química , Glicoforinas/classificação , Humanos , Malária Falciparum/sangue , Malária Falciparum/epidemiologia , Dados de Sequência Molecular , Filogenia , Plasmodium falciparum , Polimorfismo de Nucleotídeo Único , Estrutura Terciária de Proteína
13.
J Hum Genet ; 59(6): 349-52, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24785689

RESUMO

Bitter taste perception, mediated by receptors encoded by the TAS2R loci, has important roles in human health and nutrition. Prior studies have demonstrated that nonsynonymous variation at site 516 in the coding exon of TAS2R16, a bitter taste receptor gene on chromosome 7, has been subject to positive selection and is strongly correlated with differences in sensitivity to salicin, a bitter anti-inflammatory compound, in human populations. However, a recent study suggested that the derived G-allele at rs702424 in the TAS2R16 promoter has also been the target of recent selection and may have an additional effect on the levels of salicin bitter taste perception. Here, we examined alleles at rs702424 for signatures of selection using Extended Haplotype Homozygosity (EHH) and FST statistics in diverse populations from West Central, Central and East Africa. We also performed a genotype-phenotype analysis of salicin sensitivity in a subset of 135 individuals from East Africa. Based on our data, we did not find evidence for positive selection at rs702424 in African populations, suggesting that nucleotide position 516 is likely the site under selection at TAS2R16. Moreover, we did not detect a significant association between rs702424 alleles and salicin bitter taste recognition, implying that this site does not contribute to salicin phenotypic variance. Overall, this study of African diversity provides further information regarding the genetic architecture and evolutionary history of a biologically-relevant trait in humans.


Assuntos
Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Receptores Acoplados a Proteínas G/genética , Percepção Gustatória/genética , África Oriental , Alelos , Anti-Inflamatórios/farmacologia , Álcoois Benzílicos/farmacologia , Evolução Molecular , Estudos de Associação Genética , Glucosídeos/farmacologia , Humanos , Receptores Acoplados a Proteínas G/metabolismo
14.
Mol Biol Evol ; 29(4): 1141-53, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22130969

RESUMO

Although human bitter taste perception is hypothesized to be a dietary adaptation, little is known about genetic signatures of selection and patterns of bitter taste perception variability in ethnically diverse populations with different diets, particularly from Africa. To better understand the genetic basis and evolutionary history of bitter taste sensitivity, we sequenced a 2,975 bp region encompassing TAS2R38, a bitter taste receptor gene, in 611 Africans from 57 populations in West Central and East Africa with diverse subsistence patterns, as well as in a comparative sample of 132 non-Africans. We also examined the association between genetic variability at this locus and threshold levels of phenylthiocarbamide (PTC) bitterness in 463 Africans from the above populations to determine how variation influences bitter taste perception. Here, we report striking patterns of variation at TAS2R38, including a significant excess of novel rare nonsynonymous polymorphisms that recently arose only in Africa, high frequencies of haplotypes in Africa associated with intermediate bitter taste sensitivity, a remarkably similar frequency of common haplotypes across genetically and culturally distinct Africans, and an ancient coalescence time of common variation in global populations. Additionally, several of the rare nonsynonymous substitutions significantly modified levels of PTC bitter taste sensitivity in diverse Africans. While ancient balancing selection likely maintained common haplotype variation across global populations, we suggest that recent selection pressures may have also resulted in the unusually high level of rare nonsynonymous variants in Africa, implying a complex model of selection at the TAS2R38 locus in African populations. Furthermore, the distribution of common haplotypes in Africa is not correlated with diet, raising the possibility that common variation may be under selection due to their role in nondietary biological processes. In addition, our data indicate that novel rare mutations contribute to the phenotypic variance of PTC sensitivity, illustrating the influence of rare variation on a common trait, as well as the relatively recent evolution of functionally diverse alleles at this locus.


Assuntos
População Negra/genética , Evolução Molecular , Receptores Acoplados a Proteínas G/genética , Paladar/genética , Adaptação Biológica/genética , África , Alelos , Variação Genética , Haplótipos/genética , Humanos , Mutação , Fenótipo
15.
Hum Genet ; 132(9): 987-99, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23609612

RESUMO

Malaria is one of the strongest selective pressures in recent human evolution. African populations have been and continue to be at risk for malarial infections. However, few studies have re-sequenced malaria susceptibility loci across geographically and genetically diverse groups in Africa. We examined nucleotide diversity at Intercellular adhesion molecule-1 (ICAM-1), a malaria susceptibility candidate locus, in a number of human populations with a specific focus on diverse African ethnic groups. We used tests of neutrality to assess whether natural selection has impacted this locus and tested whether SNP variation at ICAM-1 is correlated with malaria endemicity. We observe differing patterns of nucleotide and haplotype variation in global populations and higher levels of diversity in Africa. Although we do not observe a deviation from neutrality based on the allele frequency distribution, we do observe several alleles at ICAM-1, including the ICAM-1 (Kilifi) allele, that are correlated with malaria endemicity. We show that the ICAM-1 (Kilifi) allele, which is common in Africa and Asia, exists on distinct haplotype backgrounds and is likely to have arisen more recently in Asia. Our results suggest that correlation analyses of allele frequencies and malaria endemicity may be useful for identifying candidate functional variants that play a role in malaria resistance and susceptibility.


Assuntos
Etnicidade/genética , Predisposição Genética para Doença/genética , Variação Genética , Molécula 1 de Adesão Intercelular/genética , Malária/genética , Sequência de Bases , População Negra/genética , Primers do DNA/genética , Frequência do Gene , Genética Populacional , Haplótipos/genética , Humanos , Desequilíbrio de Ligação , Malária/etnologia , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Alinhamento de Sequência , Análise de Sequência de DNA
16.
Genome Biol ; 24(1): 35, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829244

RESUMO

BACKGROUND: Mapping of quantitative trait loci (QTL) associated with molecular phenotypes is a powerful approach for identifying the genes and molecular mechanisms underlying human traits and diseases, though most studies have focused on individuals of European descent. While important progress has been made to study a greater diversity of human populations, many groups remain unstudied, particularly among indigenous populations within Africa. To better understand the genetics of gene regulation in East Africans, we perform expression and splicing QTL mapping in whole blood from a cohort of 162 diverse Africans from Ethiopia and Tanzania. We assess replication of these QTLs in cohorts of predominantly European ancestry and identify candidate genes under selection in human populations. RESULTS: We find the gene regulatory architecture of African and non-African populations is broadly shared, though there is a considerable amount of variation at individual loci across populations. Comparing our analyses to an equivalently sized cohort of European Americans, we find that QTL mapping in Africans improves the detection of expression QTLs and fine-mapping of causal variation. Integrating our QTL scans with signatures of natural selection, we find several genes related to immunity and metabolism that are highly differentiated between Africans and non-Africans, as well as a gene associated with pigmentation. CONCLUSION: Extending QTL mapping studies beyond European ancestry, particularly to diverse indigenous populations, is vital for a complete understanding of the genetic architecture of human traits and can reveal novel functional variation underlying human traits and disease.


Assuntos
População da África Oriental , Locos de Características Quantitativas , Humanos , Mapeamento Cromossômico , Expressão Gênica , Tanzânia , Variação Genética
17.
Int J Infect Dis ; 102: 483-488, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33010461

RESUMO

To date, SARS-CoV-2 (the virus that causes COVID-19) has spread to almost every region of the world, infecting millions and resulting in the deaths of hundreds of thousands of people. Although it was predicted that Africa would suffer a massive loss of life due to this pandemic, the number of COVID-19 cases has been relatively low across the continent. Researchers have speculated that several factors may be responsible for this outcome in Africa, including the extensive experience that countries have with infectious diseases and the young median age of their populations. However, it is still important for African countries to adopt aggressive and bold approaches against COVID-19, in case the nature of the pandemic changes. This short review will summarize the status of the outbreak in Africa and propose possible reasons for current trends, as well as discuss interventions aimed at preventing a rapid increase in the number of COVID-19 cases in the future.


Assuntos
COVID-19/mortalidade , COVID-19/transmissão , África Subsaariana/epidemiologia , COVID-19/epidemiologia , COVID-19/virologia , Humanos , Pandemias/estatística & dados numéricos , SARS-CoV-2/genética , SARS-CoV-2/fisiologia
18.
medRxiv ; 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34230933

RESUMO

We investigated global patterns of genetic variation and signatures of natural selection at host genes relevant to SARS-CoV-2 infection (ACE2, TMPRSS2, DPP4, and LY6E). We analyzed novel data from 2,012 ethnically diverse Africans and 15,997 individuals of European and African ancestry with electronic health records, and integrated with global data from the 1000GP. At ACE2, we identified 41 non-synonymous variants that were rare in most populations, several of which impact protein function. However, three non-synonymous variants were common among Central African hunter-gatherers from Cameroon and are on haplotypes that exhibit signatures of positive selection. We identify strong signatures of selection impacting variation at regulatory regions influencing ACE2 expression in multiple African populations. At TMPRSS2, we identified 13 amino acid changes that are adaptive and specific to the human lineage. Genetic variants that are targets of natural selection are associated with clinical phenotypes common in patients with COVID-19.

19.
Res Sq ; 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34341784

RESUMO

We investigated global patterns of genetic variation and signatures of natural selection at host genes relevant to SARS-CoV-2 infection ( ACE2, TMPRSS2, DPP4 , and LY6E ). We analyzed novel data from 2,012 ethnically diverse Africans and 15,997 individuals of European and African ancestry with electronic health records, and integrated with global data from the 1000GP. At ACE2 , we identified 41 non-synonymous variants that were rare in most populations, several of which impact protein function. However, three non-synonymous variants were common among Central African hunter-gatherers from Cameroon and are on haplotypes that exhibit signatures of positive selection. We identify strong signatures of selection impacting variation at regulatory regions influencing ACE2 expression in multiple African populations. At TMPRSS2 , we identified 13 amino acid changes that are adaptive and specific to the human lineage. Genetic variants that are targets of natural selection are associated with clinical phenotypes common in patients with COVID-19.

20.
Genome Biol ; 20(1): 204, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31597575

RESUMO

Following publication of the original article [1], a typographical error in the formula for calculating di in the "Scans for local adaptation" subsection in the Method section, was identified. The correct formula should be.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA