Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Morphol ; 281(3): 348-364, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31998996

RESUMO

Two separate subfamilies of Plio-Pleistocene African pigs (suids) consecutively evolved hypsodont and horizodont molars with flat occlusal surfaces, commonly interpreted as an adaptive trait to a grazing diet, similar to that of the present warthogs (Phacochoerus spp.). To investigate this in detail, we studied the 3D-dental topography of fossil specimens from the Turkana Basin, using geographic information systems-based methods. To establish baselines for interpretation of the Turkana Basin suids, topography of third molars of extant suids with known diets were analyzed: grazing warthog (Phacochoerus africanus), herbivorous mixed-feeder forest hog (Hylochoerus meinertzhageni), omnivorous generalist wild boar (Sus scrofa), omnivorous fruit and tuber eater bush pig (Potamochoerus spp.), and omnivorous fruit eater babirusa (Babyrousa spp.) In addition, we analyzed supposedly browsing Miocene suids, Listriodon spp. The same topographic measures were applied to Plio-Pleistocene specimens from the Turkana Basin, Kenya: Notochoerus euilus, Notochoerus scotti, Kolpochoerus heseloni, and Metridiochoerus andrewsi. With some differences between techniques, 3D-dental topography analysis of extant suid molars mostly predicts the dietary differences between the species correctly. The grazing P. africanus differs from both the omnivorous suids and the herbivorous mixed-feeder H. meinertzhageni in all except one metrics. The omnivorous mostly tropical suids, Potamochoerus and Babyrousa, primarily differ from the generalist, S. scrofa, in the orientation patch count analysis, showing higher occlusal complexity in the latter. Although, there might be significant gaps between the morphological changes and the ecological changes, we conclude that based on comparison of dental topography with the present-day suids, N. scotti and M. andrewsi were most likely highly specialized grazers, while N. euilus and K. heseloni retained more of their ancestral, omnivorous heritage, but consumed grasses more than the extant omnivorous suids. RESEARCH HIGHLIGHTS: Dental topography can predict different diets in present-day wild pigs. The Plio-Pleistocene pigs in the Turkana Basin had dental topography mostly similar to extant grazing warthog, although some species also had resemblances to omnivorous forest pigs.


Assuntos
Dieta , Extinção Biológica , Fósseis , Herbivoria/fisiologia , Imageamento Tridimensional , Suínos/fisiologia , Dente/diagnóstico por imagem , Animais , Quênia , Análise de Componente Principal
2.
J R Soc Interface ; 13(120)2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27411727

RESUMO

Different diets wear teeth in different ways and generate distinguishable wear and microwear patterns that have long been the basis of palaeodiet reconstructions. Little experimental research has been performed to study them together. Here, we show that an artificial mechanical masticator, a chewing machine, occluding real horse teeth in continuous simulated chewing (of 100 000 chewing cycles) is capable of replicating microscopic wear features and gross wear on teeth that resemble wear in specimens collected from nature. Simulating pure attrition (chewing without food) and four plant material diets of different abrasives content (at n = 5 tooth pairs per group), we detected differences in microscopic wear features by stereomicroscopy of the chewing surface in the number and quality of pits and scratches that were not always as expected. Using computed tomography scanning in one tooth per diet, absolute wear was quantified as the mean height change after the simulated chewing. Absolute wear increased with diet abrasiveness, originating from phytoliths and grit. In combination, our findings highlight that differences in actual dental tissue loss can occur at similar microwear patterns, cautioning against a direct transformation of microwear results into predictions about diet or tooth wear rate.


Assuntos
Mastigação , Modelos Biológicos , Dente Molar/patologia , Dente Molar/fisiopatologia , Desgaste dos Dentes/patologia , Desgaste dos Dentes/fisiopatologia , Animais , Cavalos
3.
Artigo em Inglês | MEDLINE | ID: mdl-27298463

RESUMO

Although ecometric methods have been used to analyse fossil mammal faunas and environments of Eurasia and North America, such methods have not yet been applied to the rich fossil mammal record of eastern Africa. Here we report results from analysis of a combined dataset spanning east and west Turkana from Kenya between 7 and 1 million years ago (Ma). We provide temporally and spatially resolved estimates of temperature and precipitation and discuss their relationship to patterns of faunal change, and propose a new hypothesis to explain the lack of a temperature trend. We suggest that the regionally arid Turkana Basin may between 4 and 2 Ma have acted as a 'species factory', generating ecological adaptations in advance of the global trend. We show a persistent difference between the eastern and western sides of the Turkana Basin and suggest that the wetlands of the shallow eastern side could have provided additional humidity to the terrestrial ecosystems. Pending further research, a transient episode of faunal change centred at the time of the KBS Member (1.87-1.53 Ma), may be equally plausibly attributed to climate change or to a top-down ecological cascade initiated by the entry of technologically sophisticated humans.This article is part of the themed issue 'Major transitions in human evolution'.


Assuntos
Evolução Biológica , Meio Ambiente , Fósseis , Mamíferos/fisiologia , Animais , Biodiversidade , Hominidae , Quênia , Modelos Biológicos , Paleontologia , Chuva , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA