Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Chemistry ; 30(36): e202400332, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38654511

RESUMO

Today, rechargeable batteries are omnipresent and essential for our existence. In order to improve the electrochemical performance of electric fields, the introduction of electrolytes with fluorine (F)-based inorganic elemental compositions is a direction of exploration. However, most fluorocarbons have a high global warming potential and ozone depletion potential, which do not meet the sustainability requirements of the battery industry. Therefore, developing sustainable electrolytes is a viable option for future battery development. Although researchers have made much progress in electrolyte optimization, little attention has been paid to developing low-toxic and safe electrolytes. This review aims to elucidate the design principles and recent advances in this direction for solvents and salts. It concludes with a summary and outlook on future research directions for the molecular design of green electrolytes for practical high-voltage rechargeable batteries.

2.
Angew Chem Int Ed Engl ; 62(49): e202312973, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37846843

RESUMO

Ether-based electrolytes are promising for secondary batteries due to their good compatibility with alkali metal anodes and high ionic conductivity. However, they suffer from poor oxidative stability and high toxicity, leading to severe electrolyte decomposition at high voltage and biosafety/environmental concerns when electrolyte leakage occurs. Here, we report a green ether solvent through a rational design of carbon-chain regulation to elicit steric hindrance, such a structure significantly reducing the solvent's biotoxicity and tuning the solvation structure of electrolytes. Notably, our solvent design is versatile, and an anion-dominated solvation structure is favored, facilitating a stable interphase formation on both the anode and cathode in potassium-ion batteries. Remarkably, the green ether-based electrolyte demonstrates excellent compatibility with K metal and graphite anode and a 4.2 V high-voltage cathode (200 cycles with average Coulombic efficiency of 99.64 %). This work points to a promising path toward the molecular design of green ether-based electrolytes for practical high-voltage potassium-ion batteries and other rechargeable batteries.

3.
Chemphyschem ; 23(1): e202100645, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34626067

RESUMO

Hexagonal boron nitride (h-BN) and exfoliated nanosheets (BNNs) not only resemble their carbon counterparts graphite and graphene nanosheets in structural configurations and many excellent materials characteristics, especially the ultra-high thermal conductivity, but also offer other unique properties such as being electrically insulating and extreme chemical stability and oxidation resistance even at elevated temperatures. In fact, BNNs as a special class of 2-D nanomaterials have been widely pursued for technological applications that are beyond the reach of their carbon counterparts. Highlighted in this article are significant recent advances in the development of more effective and efficient exfoliation techniques for high-quality BNNs, the understanding of their characteristic properties, and the use of BNNs in polymeric nanocomposites for thermally conductive yet electrically insulating materials and systems. Major challenges and opportunities for further advances in the relevant research field are also discussed.


Assuntos
Grafite , Nanocompostos , Compostos de Boro , Condutividade Térmica
4.
Angew Chem Int Ed Engl ; 61(22): e202201972, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35294100

RESUMO

Although proton-ion batteries have received considerable attention owing to their reliability, safety, toxin-free nature, and low cost, their development remains in the early stages because of lacking proper electrolytes and cathodes for facilitating a high output voltage and stable cycle performance. We present a novel cathode based on active nitrogen centre, which provides a flat discharge plateau at 1 V with a capacity of 115 mAh g-1 and excellent stability. Moreover, a quasi-solid electrolyte was developed to overcome the issue of corrosion, broaden the potential window of the electrolyte, and prevent the active material from dissolving. While using the unique as-developed electrolyte, the newly designed cathode retained 89.67 % of its original capacity after 2000 cycles. Finally, we demonstrated the excellent cycle performance of the as-developed metal-free, flexible, soft-packed battery. Notably, even when a portion of the battery was cut off, it continued to function normally.

5.
Nanotechnology ; 28(18): 184002, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28338473

RESUMO

We describe the super compressible and highly recoverable response of bucky sponges as they are struck by a heavy flat-punch striker. The bucky sponges studied here are structurally stable, self-assembled mixtures of multiwalled carbon nanotubes (MWCNTs) and carbon fibers (CFs). We engineered the microstructure of the sponges by controlling their porosity using different CF contents. Their mechanical properties and energy dissipation characteristics during impact loading are presented as a function of their composition. The inclusion of CFs improves the impact force damping by up to 50% and the specific damping capacity by up to 7% compared to bucky sponges without CFs. The sponges also exhibit significantly better stress mitigation characteristics compared to vertically aligned CNT foams of similar densities. We show that delamination occurs at the MWCNT-CF interfaces during unloading, and it arises from the heterogeneous fibrous microstructure of the bucky sponges.

6.
Phys Chem Chem Phys ; 17(15): 10022-7, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25785916

RESUMO

In this study, we present the use of C60 as an active spacer material on a silver (Ag) based surface plasmon coupled emission (SPCE) platform. In addition to its primary role of protecting the Ag thin film from oxidation, the incorporation of C60 facilitated the achievement of a 30-fold enhancement in the emission intensity of rhodamine B (RhB) fluorophore. The high signal yield was attributed to the unique π-π interactions between C60 thin films and RhB, which enabled efficient transfer of energy of RhB emission to Ag plasmon modes. Furthermore, minor variations in the C60 film thickness yielded large changes in the enhancement and angularity properties of the SPCE signal, which can be exploited for sensing applications. Finally, the low-cost fabrication process of the Ag-C60 thin film stacks render C60 based SPCE substrates ideal, for the economic and simplistic detection of analytes.


Assuntos
Fulerenos/química , Prata/química , Grafite/química , Ressonância de Plasmônio de Superfície , Volatilização
7.
Phys Chem Chem Phys ; 17(38): 25049-54, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26345678

RESUMO

The relatively low sensitivity of fluorescence detection schemes, which are mainly limited by the isotropic nature of fluorophore emission, can be overcome by utilizing surface plasmon coupled emission (SPCE). In this study, we demonstrate directional emission from fluorophores on flexible Ag-C60 SPCE sensor platforms for point-of-care sensing, in healthcare and forensic sensing scenarios, with at least 10 times higher sensitivity than traditional fluorescence sensing schemes. Adopting the highly sensitive Ag-C60 SPCE platform based on glass and novel low-cost flexible substrates, we report the unambiguous detection of acid-fast Mycobacterium tuberculosis (Mtb) bacteria at densities as low as 20 Mtb mm(-2); from non-acid-fast bacteria (e.g., E. coli and S. aureus), and the specific on-site detection of acid-fast sperm cells in human semen samples. In combination with the directional emission and high-sensitivity of SPCE platforms, we also demonstrate the utility of smartphones that can replace expensive and cumbersome detectors to enable rapid hand-held detection of analytes in resource-limited settings; a much needed critical advance to biosensors, for developing countries.


Assuntos
Técnicas Biossensoriais , Fulerenos/química , Prata/química , Escherichia coli/isolamento & purificação , Corantes Fluorescentes/química , Ciências Forenses , Vidro/química , Humanos , Masculino , Microscopia de Fluorescência , Mycobacterium tuberculosis/isolamento & purificação , Espermatozoides/citologia , Staphylococcus aureus/isolamento & purificação
8.
ScientificWorldJournal ; 2015: 419215, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26495423

RESUMO

Seed coat permeability was examined using a model that tested the effects of soaking tomato (Solanum lycopersicon) seeds in combination with carbon-based nanomaterials (CBNMs) and ultrasonic irradiation (US). Penetration of seed coats to the embryo by CBNMs, as well as CBNMs effects on seed germination and seedling growth, was examined. Two CBNMs, C60(OH)20 (fullerol) and multiwalled nanotubes (MWNTs), were applied at 50 mg/L, and treatment exposure ranged from 0 to 60 minutes. Bright field, fluorescence, and electron microscopy and micro-Raman spectroscopy provided corroborating evidence that neither CBNM was able to penetrate the seed coat. The restriction of nanomaterial (NM) uptake was attributed to the semipermeable layer located at the innermost layer of the seed coat adjacent to the endosperm. Seed treatments using US at 30 or 60 minutes in the presence of MWNTs physically disrupted the seed coat; however, the integrity of the semipermeable layer was not impaired. The germination percentage and seedling length and weight were enhanced in the presence of MWNTs but were not altered by C60(OH)20. The combined exposure of seeds to NMs and US provided insight into the nanoparticle-seed interaction and may serve as a delivery system for enhancing seed germination and early seedling growth.


Assuntos
Carbono/farmacologia , Germinação/efeitos dos fármacos , Nanoestruturas/química , Plântula/crescimento & desenvolvimento , Sementes/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/efeitos dos fármacos , Permeabilidade , Plântula/anatomia & histologia , Plântula/efeitos dos fármacos , Sementes/anatomia & histologia , Sementes/efeitos dos fármacos , Sementes/ultraestrutura , Sonicação , Ultrassom
9.
Phys Chem Chem Phys ; 16(18): 8168-77, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24654002

RESUMO

In bulk materials, defects are usually considered to be unwanted since deviations from perfect lattices may degrade device performance. Interestingly, the presence of defects throws open new possibilities in the case of nanostructures due to the properties related to their limited size scale. Defects and disorders which alter the electronic structure of nanostructures can significantly influence their electronic, magnetic and nonlinear optical properties. Here, we show that defect engineering is an effective strategy for tailoring the nonlinear optical (NLO) properties of carbon and ZnO nanostructures. The effects of surface states, lattice disorders, polycrystalline interfaces and heterogeneous dopants on the nonlinear absorption behaviour of these nanostructures are discussed in detail. Realistic tunable NLO features achieved by controlling such defects enhance the scope of these nanostructures in device applications such as optical limiting, optical switching, pulse shaping, pulse compression and optical diode action.

10.
Nano Lett ; 13(12): 5771-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24224861

RESUMO

Nanostructured carbons are posited to offer an alternative to silicon and lead to further miniaturization of photonic and electronic devices. Here, we report the experimental realization of the first all-carbon solid-state optical diode that is based on axially asymmetric nonlinear absorption in a thin saturable absorber (graphene) and a thin reverse saturable absorber (C60) arranged in tandem. This all-optical diode action is polarization independent and has no phase-matching constraints. The nonreciprocity factor of the device can be tuned by varying the number of graphene layers and the concentration or thickness of the C60 coating. This ultracompact graphene/C60 based optical diode is versatile with an inherently large bandwidth, chemical and thermal stability, and is poised for cost-effective large-scale integration with existing fabrication technologies.


Assuntos
Carbono/química , Grafite/química , Nanotubos de Carbono/química , Óptica e Fotônica , Absorção , Nanoestruturas/química , Silício/química
11.
Nanoscale ; 16(12): 5893-5902, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38389495

RESUMO

Carbon has been widely used as an electrode material in commercial metal-ion batteries (MIBs) because of its desirable electrical, mechanical, and physical properties. Still, traditional carbon electrodes suffer from limited mechanical stability and electrochemical performance in MIBs. Drawing inspiration from biological species, the carbon allotropes, such as fullerenes, carbon nanotubes, and graphene, can be engineered into mechanically robust, highly conductive frameworks with enhanced ion storage and transport capabilities for MIBs. Here, we present an assortment of bio-inspired carbon electrodes that have enhanced the cycling stability, capacity retention, and overall performance of MIBs. In addition, mimicking the structure and functionality of biological systems has led to the development of flexible MIBs whose performance does not degrade even when stretched, bent, or twisted. Finite element analysis (FEA) is a useful guide in identifying such bio-inspired carbon frameworks because it can simulate and analyze potential failure scenarios, such as stress build-up or structural collapse in MIBs. This review highlights through several examples that there is much scope for improving carbon-based electrode materials through bio-inspired designs for practical high-performance MIBs.

12.
Chem Sci ; 15(7): 2323-2350, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38362439

RESUMO

In the past few decades, great efforts have been made to develop advanced transition metal dichalcogenide (TMD) materials as metal-ion battery electrodes. However, due to existing conversion reactions, they still suffer from structural aggregation and restacking, unsatisfactory cycling reversibility, and limited ion storage dynamics during electrochemical cycling. To address these issues, extensive research has focused on molecular modulation strategies to optimize the physical and chemical properties of TMDs, including phase engineering, defect engineering, interlayer spacing expansion, heteroatom doping, alloy engineering, and bond modulation. A timely summary of these strategies can help deepen the understanding of their basic mechanisms and serve as a reference for future research. This review provides a comprehensive summary of recent advances in molecular modulation strategies for TMDs. A series of challenges and opportunities in the research field are also outlined. The basic mechanisms of different modulation strategies and their specific influences on the electrochemical performance of TMDs are highlighted.

13.
Adv Mater ; 36(24): e2305795, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38294305

RESUMO

Solid-state potassium metal batteries (SPMBs) are promising candidates for the next generation of energy storage systems for their low cost, safety, and high energy density. However, full SPMBs are not yet reported due to the K dendrites, interfacial incompatibility, and limited availability of suitable solid-state electrolytes. Here, stable SPMBs using a new iodinated solid polymer electrolyte (ISPE) are presented. The functional ions reconstruct ion transport channels, providing efficient potassium ion transport. ISPE shows a combination of high ionic conductivity, superior interfacial compatibility, and electrochemical stability. In situ alloying and iodinated interlayer increase K metal compatibility for prolonged cycling with low polarization. Moreover, the ISPE enables SPMBs with Prussian blue cathode stable operation at a high voltage of 4.5 V, a superior rate capability, and long-term cycling over 3000 cycles (4.2 V vs K+/K) with an ultra-high coulombic efficiency of 99.94%. More importantly, a classic solid-state potassium metal pouch cell achieves 4.2 V stable cycling over 800 cycles with a high retention of 93.6%, presenting a new development strategy for secure and high-performance rechargeable solid-state potassium metal batteries.

14.
ACS Nano ; 18(20): 13415-13427, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38727526

RESUMO

Layered oxide cathode materials may undergo irreversible oxygen loss and severe phase transitions during high voltage cycling and may be susceptible to transition metal dissolution, adversely affecting their electrochemical performance. Here, to address these challenges, we propose synergistic doping of nonmetallic elements and in situ electrochemical diffusion as potential solution strategies. Among them, the distribution of the nonmetallic element fluorine within the material can be regulated by doping boron, thereby suppressing manganese dissolution through surface enrichment of fluorine. Furthermore, in situ electrochemical diffusion of fluorine from the surface into the bulk of the materials after charging reduces the energy barrier of potassium ion diffusion while effectively inhibiting irreversible oxygen loss under high voltage. The modified K0.5Mn0.83Mg0.1Ti0.05B0.02F0.1O1.9 layered oxide cathode exhibits a high capacity of 147 mAh g-1 at 50 mA g-1 and a long cycle life of 2200 cycles at 500 mA g-1. This work demonstrates the efficacy of synergistic doping and in situ electrochemical diffusion of nonmetallic elements and provides valuable insights for optimizing rechargeable battery materials.

15.
BMC Biotechnol ; 13: 37, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23622112

RESUMO

BACKGROUND: Recent research on nanoparticles in a number of crops has evidenced for enhanced germination and seedling growth, physiological activities including photosynthetic activity and nitrogen metabolism, mRNA expression and protein level, and also positive changes in gene expression indicating their potential use in crop improvement. We used a medicinally rich vegetable crop, bitter melon, as a model to evaluate the effects of seed treatment with a carbon-based nanoparticle, fullerol [C60(OH)20], on yield of plant biomass and fruit characters, and phytomedicine contents in fruits. RESULTS: We confirmed the uptake, translocation and accumulation of fullerol through bright field imaging and Fourier transform infra-red spectroscopy. We observed varied effects of seed treatment at five concentrations, including non-consequential and positive, on plant biomass yield, fruit yield and its component characters, and content of five phytomedicines in fruits. Fullerol-treatment resulted in increases up to 54% in biomass yield and 24% in water content. Increases of up to 20% in fruit length, 59% in fruit number, and 70% in fruit weight led to an improvement up to 128% in fruit yield. Contents of two anticancer phytomedicines, cucurbitacin-B and lycopene, were enhanced up to 74% and 82%, respectively, and contents of two antidiabetic phytomedicines, charantin and insulin, were augmented up to 20% and 91%, respectively. Non-significant correlation inter se plant biomass, fruit yield, phytomedicine content and water content evidenced for separate genetic control and biosynthetic pathways for production of plant biomass, fruits, and phytomedicines in fruits, and also no impact of increased water uptake. CONCLUSIONS: While our results indicated possibility of improving crop yield and quality by using proper concentrations of fullerol, extreme caution needs to be exercised given emerging knowledge about accumulation and toxicity of nanoparticles in bodily tissues.


Assuntos
Biomassa , Fulerenos/química , Momordica charantia/crescimento & desenvolvimento , Nanotecnologia , Carotenoides/biossíntese , Frutas/química , Frutas/metabolismo , Fulerenos/metabolismo , Fulerenos/farmacologia , Germinação/efeitos dos fármacos , Glucosídeos/biossíntese , Insulina/genética , Insulina/metabolismo , Licopeno , Momordica charantia/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Distribuição Tecidual , Triterpenos/metabolismo , Água/metabolismo
16.
Nanomicro Lett ; 15(1): 200, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596502

RESUMO

High degrees of freedom (DOF) for K+ movement in the electrolytes is desirable, because the resulting high ionic conductivity helps improve potassium-ion batteries, yet requiring support from highly free and flammable organic solvent molecules, seriously affecting battery safety. Here, we develop a K+ flux rectifier to trim K ion's DOF to 1 and improve electrochemical properties. Although the ionic conductivity is compromised in the K+ flux rectifier, the overall electrochemical performance of PIBs was improved. An oxidation stability improvement from 4.0 to 5.9 V was realized, and the formation of dendrites and the dissolution of organic cathodes were inhibited. Consequently, the K||K cells continuously cycled over 3,700 h; K||Cu cells operated stably over 800 cycles with the Coulombic efficiency exceeding 99%; and K||graphite cells exhibited high-capacity retention over 74.7% after 1,500 cycles. Moreover, the 3,4,9,10-perylenetetracarboxylic diimide organic cathodes operated for more than 2,100 cycles and reached year-scale-cycling time. We fabricated a 2.18 Ah pouch cell with no significant capacity fading observed after 100 cycles.

17.
Adv Mater ; 35(30): e2300886, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37067879

RESUMO

Instability at the solid electrolyte interface (SEI) and uncontrollable growth of potassium dendrites have been pressing issues for potassium-ion batteries. Herein, a self-supporting electrode composed of bismuth and nitrogen-doped reduced graphene oxide (Bi80 /NrGO) is designed as an anode host for potassium-metal batteries. Following the molten potassium diffusion into Bi80 /NrGO, the resulting K@Bi80 /NrGO exhibits unique hollow pores that provide K+ -diffusion channels and deposition space to buffer volume expansion, thus maintaining the electrode structure and SEI stability. The K@Bi80 /NrGO also provides a controlled electric field that promotes uniform K+ flux, abundant potassiophilic N sites, and Bi alloying active sites, collectively enabling precise nucleation and selective deposition of potassium to achieve dendrite-resistant anodes. With the K@Bi80 /NrGO-based optimized electrodes, the assembled K@Bi80 /NrGO symmetrical cells can sustain stable cycling over 3000 h at a current density of 0.2 mA cm-2 . Full cells with a Prussian blue cathode and K@Bi80 /NrGO anode exhibit high stability (with no degradation for 1960 cycles at 1000 mA g-1 ) with 99% Coulombic efficiency. This work may lead to the design of anodes with the triple attributes of precise nucleation, smooth diffusion, and dendrite inhibition, ideal for developing stable potassium-metal anodes and beyond.

18.
Small Methods ; 7(11): e2300893, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37712199

RESUMO

The manganese-based layered oxides as a promising cathode material for potassium ion batteries (PIBs) have attracted considerable interest owing to their simple synthesis, high specific capacity, and low cost. However, due to the irreversible phase transition and the Jahn-Teller distortion of the Mn3+ , its application in potassium ion batteries is limited, leading to slow potassium ion kinetics and severe capacity attenuation. Here, entropy-tuning by changing the content of cathode material composition is proposed to address the above challenges. Compared to low and high entropy variants of K0.45 Mnx Co(1- x )/4 Mg(1- x )/4 Cu(1- x )/4 Ti(1- x )/4 O2 , where x = 0.8, 0.6, and 0.4, the medium entropy K0.45 Mn0.6 Co0.1 Mg0.1 Cu0.1 Ti0.1 O2 shows more balanced electrochemical properties in the PIBs. Benefiting from entropy-tuned suppression of the Jahn-Teller distortion of the Mn3+ , the K0.45 Mn0.6 Co0.1 Mg0.1 Cu0.1 Ti0.1 O2 can achieve a high K+ ion transport rate and alleviated volume variation while retaining high specific capacity. Accordingly, the medium entropy K0.45 Mn0.6 Co0.1 Mg0.1 Cu0.1 Ti0.1 O2 cathode in the full cell exhibits a high capacity of 100 mAh g-1 at 50 mA g-1 , delivers superior rate capability (65.8 mAh g-1 at 500 mA g-1 ) and cycling stability (67.8 mAh g-1 after 350 cycles at 100 mA g-1 ). The entropy-tuning strategy is expected to open new avenues in designing PIB cathode materials and beyond.

19.
Adv Mater ; 35(29): e2302280, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37078585

RESUMO

Aqueous electrolytes are highly important for batteries due to their sustainability, greenness, and low cost. However, the free water molecules react violently with alkali metals, rendering the high-capacity of alkali-metal anodes unusable. Here, water molecules are confined in a carcerand-like network to build quasi-solid aqueous electrolytes (QAEs) with reduced water molecules' freedom and matched with the low-cost chloride salts. The formed QAEs possess substantially different properties than liquid water molecules, including stable operation with alkali-metal anodes without gas evolution. Specifically, the alkali-metal anodes can directly cycle in a water-based environment with suppressed growth of dendrites, electrode dissolution, and polysulfide shuttle. Li-metal symmetric cells achieved long-term cycling over 7000 h (and over 5000/4000 h for Na/K symmetric cells), and all the Cu-based alkali-metal cells exhibited a Coulombic efficiency of over 99%. Full metal batteries, such as Li||S batteries, attained high Coulombic efficiency, long life (over 4000 cycles), and unprecedented energy density among water-based rechargeable batteries.

20.
Nat Commun ; 14(1): 644, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36746953

RESUMO

The crystal phase structure of cathode material plays an important role in the cell performance. During cycling, the cathode material experiences immense stress due to phase transformation, resulting in capacity degradation. Here, we show phase-engineered VO2 as an improved potassium-ion battery cathode; specifically, the amorphous VO2 exhibits superior K storage ability, while the crystalline M phase VO2 cannot even store K+ ions stably. In contrast to other crystal phases, amorphous VO2 exhibits alleviated volume variation and improved electrochemical performance, leading to a maximum capacity of 111 mAh g-1 delivered at 20 mA g-1 and over 8 months of operation with good coulombic efficiency at 100 mA g-1. The capacity retention reaches 80% after 8500 cycles at 500 mA g-1. This work illustrates the effectiveness and superiority of phase engineering and provides meaningful insights into material optimization for rechargeable batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA