RESUMO
The results of a systematic investigation aimed at determining the dominant gas phase chemistry active during GaN MOVPE are reported and discussed in this work. This study was performed developing a thermodynamic database including the most stable GaN gas phase species and a gas phase mechanism that could efficiently describe their interconversion kinetics. The thermodynamic data and the kinetic mechanism were calculated combining density functional theory and ab initio simulations. Structures and vibrational frequencies of reactants and transition states were determined at the M062X/6-311+G(d,p) level, while energies were computed at the ROCBS-QB3 level. Rate constants were calculated using transition state theory using the rigid rotor - harmonic oscillator approximation and considering the possible degeneration of internal motions in torsional rotations. The thermodynamic analysis indicated that the Ga gas phase species formed in the highest concentration at the standard GaN deposition temperature (1300 K) is GaNH2, followed by GaH and Ga. The diatomic GaN gas phase species, often considered to be the main precursor to the film growth, is predicted to be unstable with respect to GaNH2. Among the gas phase species containing two Ga atoms, the most stable are GaNHGaH(NH2)3, GaNHGaH2(NH2)2, and GaNHGa(NH2)4, thus indicating that the substitution of the methyl groups of the precursor with H or amino groups is thermodynamically favored. Several kinetic routes leading to the formation of these species were examined. It was found that the condensation of Ga(R1)x(R2)3-x species, with R1 and R2 being either CH3, NH2, or H, is a fast process, characterized by the formation of a precursor state whose decomposition to products requires overcoming submerged energy barriers. It is suggested that these species play a key role in the formation of the first GaN nuclei, whose successive growth leads to the formation of GaN powders. A kinetic analysis performed using a fluid dynamic model allowed us to identify the main reactive routes of this complex system.
RESUMO
Trichlorosilane is the most used precursor to deposit silicon for photovoltaic applications. Despite of this, its gas phase and surface kinetics have not yet been completely understood. In the present work, it is reported a systematic investigation aimed at determining what is the dominant gas phase chemistry active during the chemical vapor deposition of Si from trichlorosilane. The gas phase mechanism was developed calculating the rate constant of each reaction using conventional transition state theory in the rigid rotor-harmonic oscillator approximation. Torsional vibrations were described using a hindered rotor model. Structures and vibrational frequencies of reactants and transition states were determined at the B3LYP/6-31+G(d,p) level, while potential energy surfaces and activation energies were computed at the CCSD(T) level using aug-cc-pVDZ and aug-cc-pVTZ basis sets extrapolating to the complete basis set limit. As gas phase and surface reactivities are mutually interlinked, simulations were performed using a microkinetic surface mechanism. It was found that the gas phase reactivity follows two different routes. The disilane mechanism, in which the formation of disilanes as reaction intermediates favors the conversion between the most stable monosilane species, and the radical pathway, initiated by the decomposition of Si2HCl5 and followed by a series of fast propagation reactions. Though both mechanisms are active during deposition, the simulations revealed that above a certain temperature and conversion threshold the radical mechanism provides a faster route for the conversion of SiHCl3 into SiCl4, a reaction that favors the overall Si deposition process as it is associated with the consumption of HCl, a fast etchant of Si. Also, this study shows that the formation of disilanes as reactant intermediates promotes significantly the gas phase reactivity, as they contribute both to the initiation of radical chain mechanisms and provide a catalytic route for the conversion between the most stable monosilanes.