Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 627, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38910254

RESUMO

Modern broiler breeds allow for high feed efficiency and rapid growth, which come at a cost of increased susceptibility to pathogens and disease. Broiler growth rate, feed efficiency, and health are affected by the composition of the gut microbiota, which in turn is influenced by diet. In this study, we therefore assessed how diet composition can affect the broiler jejunal gut microbiota. A total of 96 broiler chickens were divided into four diet groups: control, coated butyrate supplementation, medium-chain fatty acid supplementation, or a high-fibre low-protein content. Diet groups were sub-divided into age groups (4, 12 and 33 days of age) resulting in groups of 8 broilers per diet per age. The jejunum content was used for metagenomic shotgun sequencing to determine the microbiota taxonomic composition at species level. The composed diets resulted in a total of 104 differentially abundant bacterial species. Most notably were the butyrate-induced changes in the jejunal microbiota of broilers 4 days post-hatch, resulting in the reduced relative abundance of mainly Enterococcus faecium (-1.8 l2fc, Padj = 9.9E-05) and the opportunistic pathogen Enterococcus hirae (-2.9 l2fc, Padj = 2.7E-08), when compared to the control diet. This effect takes place during early broiler development, which is critical for broiler health, thus exemplifying the importance of how diet can influence the microbiota composition in relation to broiler health. Future studies should therefore elucidate how diet can be used to promote a beneficial microbiota in the early stages of broiler development.


Assuntos
Ração Animal , Galinhas , Enterococcus faecium , Streptococcus faecium ATCC 9790 , Microbioma Gastrointestinal , Jejuno , Animais , Galinhas/microbiologia , Galinhas/crescimento & desenvolvimento , Enterococcus faecium/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Jejuno/microbiologia , Dieta/veterinária , Metagenômica/métodos , Suplementos Nutricionais
2.
J Anim Physiol Anim Nutr (Berl) ; 104(6): 1819-1834, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32592266

RESUMO

Appetite is the desire for feed and water and the voluntary intake of feed and is an important regulator of livestock productivity and animal health. Economic traits such as growth rate and muscle development (meat deposition) in broilers are directly correlated to appetite. Factors that may influence appetite include environmental factors, such as stress and temperature variation, and animal-specific factors, such as learning period, eating capacity and preferences. Feed preferences have been reported to be determined in early life, and this period is important in broilers due to their fast growth and relatively short growth trajectories. This may be of importance when contemplating the use of more circular and sustainable feeds and the optimization of appetite for these feeds. The objective of this review was to review the biological mechanisms underlying appetite using data from human, animal and bird models and to consider the option for modulating appetite particularly as it relates to broiler chickens.


Assuntos
Apetite , Galinhas , Ração Animal/análise , Animais , Carne/análise , Desenvolvimento Muscular , Temperatura
3.
BMC Genomics ; 20(1): 414, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31122193

RESUMO

BACKGROUND: Immediately after birth, the porcine intestine rapidly develops morphologically, functionally, and immunologically. The jejunum, the second part of the small intestine, is of importance for nutrient uptake and immune surveillance. To study the early postnatal development of the jejunum, a meta-analysis was performed on different transcriptomic datasets. These datasets were acquired from different experimental in-house studies or from experiments described in literature of porcine jejunum mucosa. Gene expression was measured under different experimental interventions, such as nutritional intervention, at various time-points (age). RESULTS: The studies included in the meta-analysis provided gene expression data for various time-points (piglet ages) for piglets that had received a treatment versus control piglets. In separate studies, treatments were administered to the sow (i.e. amoxicillin), or nutritional supplementation directly to the piglets with medium chain fatty acids (MCFAs), and oral administration of fructooligosaccharides (FOS) or a high dose of zinc-oxide, respectively. In the meta-analysis, genes were grouped into 16 clusters according to their temporal gene expression profiles for control piglets, i.e. the changes of gene expression level over time. Functional analysis showed that these temporal profile clusters had different dominant processes, such as immune related processes or barrier function. Transcriptomics data of treatment piglets was subsequently superimposed over the control temporal profiles. In this way we could investigate which temporal profile clusters (and which biological processes) were modulated by the treatments. Interestingly, not all 16 temporal profiles were modulated. CONCLUSIONS: We showed that it is possible to re-use (publicly available) transcriptomics data and produce temporal gene expression profiles for control piglets with overexpression of genes representing specific biological processes. Subsequently, by superimposing gene expression data from (nutritional) intervention studies we observed deviations from some of these reference profile(s) and thus the plasticity of the system. By employing this meta-analysis approach we highlighted the importance of birth and weaning and the underlying biological processes.


Assuntos
Intestinos , Suínos/genética , Transcriptoma , Animais , Análise por Conglomerados , Perfilação da Expressão Gênica , Intestinos/crescimento & desenvolvimento , Nutrientes , Suínos/crescimento & desenvolvimento , Suínos/metabolismo
4.
BMC Genomics ; 18(1): 241, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28320307

RESUMO

BACKGROUND: Gut microbial colonization and development of immune competence are intertwined and are influenced by early-life nutritional, environmental, and management factors. Perturbation of the gut microbiome at young age affects the crosstalk between intestinal bacteria and host cells of the intestinal mucosa. RESULTS: We investigated the effect of a perturbation of the normal early life microbial colonization of the jejunum in 1-day old chickens. Perturbation was induced by administering 0.8 mg amoxicillin per bird per day) via the drinking water for a period of 24 h. Effects of the perturbation were measured by 16S rRNA profiling of the microbiome and whole genome gene expression analysis. In parallel to what has been observed for other animal species, we hypothesized that such an intervention may have negative impact on immune development. Trends were observed in changes of the composition and diversity of the microbiome when comparing antibiotic treated birds with their controls. in the jejunum, the expression of numerous genes changed, which potentially leads to changes in biological activities of the small intestinal mucosa. Validation of the predicted functional changes was performed by staining immune cells in the small intestinal mucosa and a reduction in the number of macrophage-like (KUL01+) cells was observed due to a direct or indirect effect of the antibiotic treatment. We provide evidence that a short, early life antibiotic treatment affects both the intestinal microbiota (temporarily) and mucosal gene expression over a period of 2 weeks. CONCLUSION: These results underscore the importance of early life microbial colonization of the gut in relation to immune development and the necessity to explore the capabilities of a variety of early life dietary and/or environmental factors to modulate the programming for immune competence in broilers.


Assuntos
Antibacterianos/farmacologia , Galinhas/imunologia , Galinhas/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Imunomodulação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Biodiversidade , Galinhas/genética , Feminino , Perfilação da Expressão Gênica , Imuno-Histoquímica , Masculino , Metagenoma , Metagenômica/métodos , Transcriptoma
5.
BMC Genomics ; 16: 418, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-26017153

RESUMO

BACKGROUND: Host genetic makeup plays a role in early gut microbial colonization and immune programming. Interactions between gut microbiota and host cells of the mucosal layer are of paramount importance for a proper development of host defence mechanisms. For different livestock species, it has already been shown that particular genotypes have increased susceptibilities towards disease causing pathogens. The objective of this study was to investigate the impact of genotypic variation on both early microbial colonization of the gut and functional development of intestinal tissue. From two genetically diverse chicken lines intestinal content samples were taken for microbiota analyses and intestinal tissue samples were extracted for gene expression analyses, both at three subsequent time-points (days 0, 4, and 16). RESULTS: The microbiota composition was significantly different between lines on each time point. In contrast, no significant differences were observed regarding changes in the microbiota diversity between the two lines throughout this study. We also observed trends in the microbiota data at genus level when comparing lines X and Y. We observed that approximately 2000 genes showed different temporal gene expression patterns when comparing line X to line Y. Immunological related differences seem to be only present at day 0, because at day 4 and 16 similar gene expression is observed for these two lines. However, for genes involved in cell cycle related processes the data show higher expression over the whole course of time in line Y in comparison to line X. CONCLUSIONS: These data suggest the genetic background influences colonization of gut microbiota after hatch in combination with the functional development of intestinal mucosal tissue, including the programming of the immune system. The results indicate that genetically different chicken lines have different coping mechanisms in early life to cope with the outside world.


Assuntos
Galinhas/genética , DNA Bacteriano/análise , Intestinos/microbiologia , Microbiota , Animais , Galinhas/classificação , Galinhas/microbiologia , Trato Gastrointestinal/microbiologia , Regulação Bacteriana da Expressão Gênica , Variação Genética , Dados de Sequência Molecular , Especificidade da Espécie
7.
Poult Sci ; 103(2): 103312, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38100944

RESUMO

Endotoxins released from poultry feces have been associated with impaired human health. Because endotoxins are released from gram-negative intestinal bacteria, it was hypothesized that dietary strategies may influence endotoxin excretion via modulation of gut microbiota. We therefore tested dietary strategies that could potentially reduce cloacal endotoxin levels in broiler chickens. One-day-old male Ross 308 (N = 1,344) broilers were housed in 48 pens (N = 8 pens/treatment, 28 chickens per pen) and fed 1 of 6 diets for 35 days (d) in a 3-phase feeding program: a basic diet (CON) that served as the reference diet, or basic diet supplemented with butyrate (BUT), inulin (INU), medium-chain fatty acids (MCFA) or Original XPC™LS (XPC), or a high-fiber-low-protein (HF-LP) diet. A significant (P < 0.05) increase in cloacal endotoxin concentration at d 35 was observed in BUT as compared to CON. Analysis of cloacal microbiota showed a trend (P < 0.07) for a higher gram-negative/gram-positive ratio and for a higher relative abundance of gram-negative bacteria at d 35 (P ≤ 0.08) in BUT and HF-LP as compared to CON. A significant (P < 0.05) increase in average daily gain (ADG) and improved feed conversion ratio (P < 0.05) were observed in MCFA during the grower phase (d 14-28), and a significant (P < 0.05) increase in average daily feed intake (ADFI) was observed in MCFA during d 0 to 28. Broilers fed HF-LP had a significantly (P < 0.05) higher FCR and lower ADG throughout the rearing period. No treatment effects were found on footpad dermatitis, but BUT had worst hock burn scores at d 35 (P < 0.01) and MCFA had worst cleanliness scores at d 21 but not at d 35 (treatment*age P < 0.05), while INU had better cleanliness as compared to CON at d 35 (P < 0.05). In conclusion, especially BUT and HF-LP were able to modulate resident microbiota and BUT also increased cloacal endotoxin levels, which was opposite to our hypothesis. The present study indicates that cloacal endotoxin release can be affected by the diet but further study is needed to find dietary treatments that can reduce cloacal endotoxin release.


Assuntos
Galinhas , Microbiota , Humanos , Animais , Masculino , Galinhas/microbiologia , Endotoxinas , Dieta/veterinária , Suplementos Nutricionais/análise , Dieta com Restrição de Proteínas/veterinária , Ácidos Graxos , Inulina , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal
8.
Virol J ; 10: 23, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23324567

RESUMO

BACKGROUND: Since we were able to isolate viable virus from brain and lung of H7N1 low pathogenic avian influenza virus (LPAIV) infected chickens, we here examined the distribution of different LPAIV strains in chickens by measuring the viral AI RNA load in multiple organs. Subtypes of H5 (H5N1, H5N2), H7 (H7N1, H7N7) and H9 (H9N2), of chicken (H5N2, H7N1, H7N7, H9N2), or mallard (H5N1) origin were tested. The actual presence of viable virus was evaluated with virus isolation in organs of H7N7 inoculated chickens. FINDINGS: Viral RNA was found by PCR in lung, brain, intestine, peripheral blood mononuclear cells, heart, liver, kidney and spleen from chickens infected with chicken isolated LPAIV H5N2, H7N1, H7N7 or H9N2. H7N7 virus could be isolated from lung, ileum, heart, liver, kidney and spleen, but not from brain, which was in agreement with the data from the PCR. Infection with mallard isolated H5N1 LPAIV resulted in viral RNA detection in lung and peripheral blood mononuclear cells only. CONCLUSION: We speculate that chicken isolated LPAI viruses are spreading systemically in chicken, independently of the strain.


Assuntos
Vírus da Influenza A/isolamento & purificação , Influenza Aviária/virologia , Animais , Encéfalo/virologia , Galinhas , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/patogenicidade , Vírus da Influenza A Subtipo H5N2/classificação , Vírus da Influenza A Subtipo H5N2/genética , Vírus da Influenza A Subtipo H5N2/isolamento & purificação , Vírus da Influenza A Subtipo H5N2/patogenicidade , Vírus da Influenza A Subtipo H7N1/classificação , Vírus da Influenza A Subtipo H7N1/genética , Vírus da Influenza A Subtipo H7N1/isolamento & purificação , Vírus da Influenza A Subtipo H7N1/patogenicidade , Vírus da Influenza A Subtipo H9N2/classificação , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Vírus da Influenza A Subtipo H9N2/patogenicidade , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Vírus da Influenza A/patogenicidade , Intestinos/virologia , Pulmão/virologia
9.
Vet Res ; 44: 67, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23915213

RESUMO

Q fever is a zoonosis caused by the intracellular bacterium Coxiella burnetii. Both humoral and cellular immunity are important in the host defence against intracellular bacteria. Little is known about the immune response to C. burnetii infections in domestic ruminants even though these species are the major source of Q fever in humans. To investigate the goat's immune response we inoculated groups of pregnant goats via inhalation with a Dutch outbreak isolate of C. burnetii. All animals were successfully infected. Phase 1 and Phase 2 IgM- and IgG-specific antibodies were measured. Cellular immune responses were investigated by interferon-gamma, enzyme-linked immunosorbent spot test (IFN-γ Elispot), lymphocyte proliferation test (LPT) and systemic cytokines. After two weeks post inoculation (wpi), a strong anti-C. burnetii Phase 2 IgM and IgG antibody response was observed while the increase in IgM anti-Phase 1 antibodies was less pronounced. IgG anti-Phase 1 antibodies started to rise at 6 wpi. Cellular immune responses were observed after parturition. Our results demonstrated humoral and cellular immune responses to C. burnetii infection in pregnant goats. Cell-mediated immune responses did not differ enough to distinguish between Coxiella-infected and non-infected pregnant animals, whereas a strong-phase specific antibody response is detected after 2 wpi. This humoral immune response may be useful in the early detection of C. burnetii-infected pregnant goats.


Assuntos
Coxiella burnetii/fisiologia , Doenças das Cabras/imunologia , Imunidade Celular , Imunidade Humoral , Febre Q/veterinária , Animais , Anticorpos Antibacterianos/sangue , Proliferação de Células , Citocinas/genética , Citocinas/metabolismo , ELISPOT/veterinária , Feminino , Doenças das Cabras/virologia , Cabras , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Interferon gama/sangue , Linfócitos/metabolismo , Gravidez , Febre Q/imunologia , Febre Q/virologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
BMC Genomics ; 13: 146, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22531008

RESUMO

BACKGROUND: Chicken meat and eggs can be a source of human zoonotic pathogens, especially Salmonella species. These food items contain a potential hazard for humans. Chickens lines differ in susceptibility for Salmonella and can harbor Salmonella pathogens without showing clinical signs of illness. Many investigations including genomic studies have examined the mechanisms how chickens react to infection. Apart from the innate immune response, many physiological mechanisms and pathways are reported to be involved in the chicken host response to Salmonella infection. The objective of this study was to perform a meta-analysis of diverse experiments to identify general and host specific mechanisms to the Salmonella challenge. RESULTS: Diverse chicken lines differing in susceptibility to Salmonella infection were challenged with different Salmonella serovars at several time points. Various tissues were sampled at different time points post-infection, and resulting host transcriptional differences investigated using different microarray platforms. The meta-analysis was performed with the R-package metaMA to create lists of differentially regulated genes. These gene lists showed many similarities for different chicken breeds and tissues, and also for different Salmonella serovars measured at different times post infection. Functional biological analysis of these differentially expressed gene lists revealed several common mechanisms for the chicken host response to Salmonella infection. The meta-analysis-specific genes (i.e. genes found differentially expressed only in the meta-analysis) confirmed and expanded the biological functional mechanisms. CONCLUSIONS: The meta-analysis combination of heterogeneous expression profiling data provided useful insights into the common metabolic pathways and functions of different chicken lines infected with different Salmonella serovars.


Assuntos
Galinhas/genética , Galinhas/metabolismo , Salmonelose Animal/genética , Salmonella/metabolismo , Animais , Movimento Celular , Biologia Computacional , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Salmonella/genética , Salmonelose Animal/metabolismo , Salmonelose Animal/microbiologia , Ubiquitina/metabolismo
11.
Virol J ; 9: 61, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22390870

RESUMO

BACKGROUND: Avian influenza virus (AIV) is classified into two pathotypes, low pathogenic (LP) and high pathogenic (HP), based on virulence in chickens.Differences in pathogenicity between HPAIV and LPAIV might eventually be related to specific characteristics of strains, tissue tropism and host responses. METHODS: To study differences in disease development between HPAIV and LPAIV, we examined the first appearance and eventual load of viral RNA in multiple organs as well as host responses in brain and intestine of chickens infected with two closely related H7N1 HPAIV or LPAIV strains. RESULTS: Both H7N1 HPAIV and LPAIV spread systemically in chickens after a combined intranasal/intratracheal inoculation. In brain, large differences in viral RNA load and host gene expression were found between H7N1 HPAIV and LPAIV infected chickens. Chicken embryo brain cell culture studies revealed that both HPAIV and LPAIV could infect cultivated embryonic brain cells, but in accordance with the absence of the necessary proteases, replication of LPAIV was limited. Furthermore, TUNEL assay indicated apoptosis in brain of HPAIV infected chickens only. In intestine, where endoproteases that cleave HA of LPAIV are available, we found minimal differences in the amount of viral RNA and a large overlap in the transcriptional responses between HPAIV and LPAIV infected chickens. Interestingly, brain and ileum differed clearly in the cellular pathways that were regulated upon an AI infection. CONCLUSIONS: Although both H7N1 HPAIV and LPAIV RNA was detected in a broad range of tissues beyond the respiratory and gastrointestinal tract, our observations indicate that differences in pathogenicity and mortality between HPAIV and LPAIV could originate from differences in virus replication and the resulting host responses in vital organs like the brain.


Assuntos
Vírus da Influenza A Subtipo H7N1/patogenicidade , Influenza Aviária/virologia , Animais , Apoptose , Encéfalo/metabolismo , Encéfalo/virologia , Embrião de Galinha , Galinhas/virologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Vírus da Influenza A Subtipo H7N1/genética , Vírus da Influenza A Subtipo H7N1/isolamento & purificação , Influenza Aviária/genética , Mucosa Intestinal/metabolismo , Intestinos/virologia , Masculino , RNA Viral/metabolismo , Transdução de Sinais
12.
Front Vet Sci ; 9: 977359, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213407

RESUMO

This study aimed to identify whether early-life conditions in broiler chickens could affect their behavior and welfare, and whether or not this was associated with an altered gut microbiome composition or diversity. Broilers were tested in a 2 x 2 factorial design with hatching conditions [home pen (OH) or at the hatchery (HH)] and enrichment (dark brooder (EE) or no brooder (NE) until 14 days of age) as factors (N = 6 per treatment combination). Microbiota composition was measured in the jejunum on days (d) 7, 14, and 35 and in pooled fecal samples on day 14. A novel environment test (NET) was performed on days 1 and 11, and the behavior was observed on days 6, 13, and 33. On day 35, composite asymmetry was determined and footpad dermatitis and hock burn were scored. In their home pen, HH showed more locomotion than OH (P = 0.05), and NE were sitting more and showed more comfort behavior than EE at all ages (P <0.001 and P = 0.001, respectively). On days 6 and 13 NE showed more eating and litter pecking while sitting, but on day 33 the opposite was found (age*enrichment: P = 0.05 and P <0.01, respectively). On days 1 and 11, HH showed more social reinstatement in the NET than OH, and EE showed more social reinstatement than NE (P <0.05). Composite asymmetry scores were lower for EE than NE (P <0.05). EE also had less footpad dermatitis and hock burn than NE (P <0.001). Within OH, NE had a more diverse fecal and jejunal microbiome compared to EE on day 14 (feces: observed richness: P = 0.052; jejunum: observed richness and Shannon: P <0.05); the principal component analysis (PCA) showed differences between NE and EE within both HH and OH in fecal samples on day 14, as well as significant differences in bacterial genera such as Lactobacillus and Lachnospiraceae (P <0.05). On day 35, PCA in jejunal samples only showed a trend (P = 0.068) for differences between NE vs. EE within the OH. In conclusion, these results suggest that especially the dark brooder affected the behavior and had a positive effect on welfare as well as affected the composition and diversity of the microbiome. Whether or not the behavior was modulated by the microbiome or vice versa remains to be investigated.

13.
Res Vet Sci ; 147: 74-82, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35483171

RESUMO

In and around poultry farms, high concentrations of endotoxins are found that have a negative impact on the health of farmers and local residents. However, little is known about the effects of chronic exposure to endotoxins on the health of poultry. The aim of this study was to identify effects of chronic exposure to airborne endotoxins (E. coli LPS) on the immune system, respiratory tract, disease susceptibility and welfare of broilers. Effects of high (HE) and low endotoxin (LE) concentrations on natural antibody titers (NAb), performance and behavior of broilers were determined. After treatment with a respiratory virus infection, infectious bronchitis virus (IBV), mRNA expression of cytokines and Toll-like receptor (TLR) 4 in the lung, tracheal ciliary activity and lesions in the respiratory tract were determined. Endotoxin affected the immune system and respiratory tract, where HE broilers tended to have lower IgM NAb binding Phosphorylcholine-conjugated to Bovine Serum Albumin, and higher interferon (IFN)-α mRNA expression and more lesions in the nasal tissue compared to LE broilers. Furthermore, HE broilers had higher TLR4 mRNA expression compared to LE broilers. However, endotoxin did not affect NAb levels binding Keyhole Limpet Hemocyanin, IFN-ß and interleukin-10 mRNA expression, IBV replication or lesions in the lung and trachea. HE and LE broilers further had similar body weight, but HE broilers showed numerically more passive behavior compared to LE broilers. In conclusion, chronic exposure to high airborne endotoxin concentrations affects components of the immune system and respiratory tract in broilers and could therefore influence disease susceptibility.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Animais , Galinhas , Infecções por Coronavirus/veterinária , Suscetibilidade a Doenças/veterinária , Endotoxinas/toxicidade , Escherichia coli , Pulmão , RNA Mensageiro/genética
14.
J Bacteriol ; 193(19): 5073-80, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21784944

RESUMO

Streptococcus suis causes infections in pigs and occasionally in humans, resulting in manifestations as meningitis, sepsis, arthritis, and septic shock. For survival within the host, S. suis requires numerous nutrients including trace metals. Little is known about the specific proteins involved in metal scavenging in S. suis. In this study we evaluated the role of the putative high-affinity metal binding lipoprotein TroA in metal acquisition and virulence. A mutant strain deficient in the expression of TroA (ΔtroA mutant) was constructed. Growth of the ΔtroA mutant in Todd-Hewitt broth was similar to wild-type growth; however, growth of the ΔtroA mutant in cation-deprived Todd-Hewitt broth and in porcine serum was strongly reduced compared to growth of wild-type bacteria. Supplementing the medium with extra manganese but not with magnesium, zinc, copper, nickel, or iron restored growth to wild-type levels, indicating that TroA is specifically required for growth in environments low in manganese. The ΔtroA mutant also showed increased susceptibility to H2O2, suggesting that TroA is involved in counteracting oxidative stress. Furthermore, the expression of the troA gene was subject to environmental regulation at the transcript level. In a murine S. suis infection model, the ΔtroA mutant displayed a nonvirulent phenotype. These data indicate that S. suis TroA is involved in manganese acquisition and is required for full virulence in mice.


Assuntos
Proteínas de Bactérias/metabolismo , Manganês/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus suis/metabolismo , Streptococcus suis/patogenicidade , Virulência/fisiologia , Animais , Proteínas de Bactérias/genética , Feminino , Peróxido de Hidrogênio/farmacologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Infecções Estreptocócicas/genética , Streptococcus suis/genética , Virulência/genética
15.
Vet Res ; 42: 10, 2011 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-21314972

RESUMO

Avian influenza virus can be divided into two groups, highly pathogenic avian influenza virus (HPAI) and low pathogenic avian influenza virus (LPAI) based on their difference in virulence. To investigate if the difference in clinical outcome between LPAI and HPAI in chickens is due to immunological host responses in the lung within the first 24 hours post infection (hpi), chickens were infected with LPAI or HPAI of subtype H7N1. Virus was found in the caudal and cranial part of the lung. With LPAI, virus was localised around the intrapulmonary bronchus and secondary bronchi. In sharp contrast, HPAI was detected throughout the whole lung. However, based on viral RNA levels, no quantitative difference was observed between LPAI and HPAI infected birds. In infected areas of the lungs, an influx of CD8α+ cells as well as KUL01+ macrophages and dendritic cells (DC) occurred as fast as 8 hpi in both infected groups. No major difference between LPAI and HPAI infected birds in the induction of cytokines and interferons at mRNA level in lung tissue was found.In conclusion, the differences in lethality for chickens infected with LPAI or HPAI could be ascribed to difference in location of the virus. However similar amounts of viral RNA, similar cytokine mRNA levels, and similar influxes of CD8α+ and KUL01+ macrophages and DC were found between HPAI and LPAI in the lungs. A cytokine storm at mRNA level as described for mammals was not observed in the lungs of HPAI infected birds within 24 hpi.


Assuntos
Citocinas/genética , Células Dendríticas/imunologia , Vírus da Influenza A Subtipo H7N1/patogenicidade , Influenza Aviária/imunologia , Pulmão/imunologia , Macrófagos/imunologia , Doenças das Aves Domésticas/imunologia , Animais , Galinhas , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/patologia , Vírus da Influenza A Subtipo H7N1/genética , Influenza Aviária/patologia , Influenza Aviária/virologia , Pulmão/patologia , Macrófagos/patologia , Masculino , Doenças das Aves Domésticas/patologia , Doenças das Aves Domésticas/virologia , Virulência
16.
Anim Microbiome ; 3(1): 52, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321110

RESUMO

BACKGROUND: Conventional pig housing and management conditions are associated with gastrointestinal pathophysiology and disease susceptibility in early life. Developing new strategies to reduce both therapeutic and prophylactic antibiotic use is urgent for the sustainable swine production globally. To this end, housing methodology providing effective environmental enrichment could be a promising alternative approach to reduce antibiotic usage, as it has been proven to positively influence pig welfare and immune status and reduce susceptibility to infections. It is, however, poorly understood how this enriched housing affects systemic and local pulmonary immune status and gut microbiota colonization during early life. In the present study, we compared the effects of two housing conditions, i.e., conventional housing: (CH) versus enriched housing (EH), on immune status and gut microbiota from birth until 61 days of age. RESULTS: The expected benefits of enrichment on pig welfare were confirmed as EH pigs showed more positive behaviour, less aggression behaviour during the weaning transition and better human animal relation during the post weaning phase. Regarding the pigs' immune status, EH pigs had higher values of haemoglobin and mean corpuscular volume in haematological profiles and higher percentages of T cells and cytotoxic T cells in peripheral blood. Furthermore, EH pigs showed higher ex vivo secretion of IL1ß and TNF-α after lipopolysaccharide stimulation of whole blood than CH pigs. The structure of the developing faecal microbiota of CH and EH pigs significantly differed as early as day 12 with an increase in the relative abundance of several bacterial groups known to be involved in the production of short chain fatty acids, such as Prevotella_2, Christensenellaceae_R_7_group and Ruminococcus gauvreauii group. Furthermore, the main difference between both housing conditions post weaning was that on day 61, CH pigs had significantly larger inter-individual variation of ileal and colonic microbiota than EH pigs. In addition to housing, other intrinsic factors (e.g., sex) were associated with gut microbiota development and immune competence. CONCLUSIONS: In addition to the known welfare benefits for pigs, environmentally enriched housing also positively drives important aspects of the development of the immune system and the establishment of gut microbiota in early life. Consequently, EH may contribute to increasing productivity of pigs and reducing antibiotic use.

17.
Front Vet Sci ; 8: 742877, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869719

RESUMO

A large variety of clinical manifestation in individual pigs occurs after infection with pathogens involved in porcine respiratory disease complex (PRDC). Some pigs are less prone to develop respiratory disease symptoms. The variation in clinical impact after infection and the recovery capacity of an individual animal are measures of its resilience. In this paper, we examined which ones of a range of animal-based factors (rectal temperature, body weight, skin lesion scores, behavior, natural antibody serum levels, serum levels of white blood cells, and type of T and granulocyte subsets) when measured prior to infection are related to disease severity. These animal-based factors and the interaction with housing regimen of the piglets (conventional or enriched) were modeled using linear regression to predict disease severity using a dataset acquired from a previous study using a well-established experimental coinfection model of porcine reproductive and respiratory syndrome virus (PRRSV) and Actinobacillus pleuropneumoniae. Both PRRSV and A. pleuropneumoniae are often involved in PRDC. Histological lung lesion score of each animal was used as a measure for PRDC severity after infection. Prior to infection, higher serum levels of lymphocytes (CD3+), naïve T helper (CD3+CD4+CD8-), CD8+ (as well as higher relative levels of CD8+), and memory T helper (CD3+CD4+CD8+) cells and higher relative levels of granulocytes (CD172a) were related to reduced disease severity in both housing systems. Raised serum concentrations of natural IgM antibodies binding to keyhole limpet hemocyanin (KLH) were also related to reduced disease severity after infection. Increased levels of skin lesions at the central body part (after weaning and before infection) were related to increased disease severity in conventional housing systems only. High resisters showed a lower histological lung lesion score, which appeared unrelated to sex. Body temperature, behavior, and growth prior to infections were influenced by housing regimen but could not explain the variation in lung lesion scores after infection. Raised basal lymphocyte counts and lower skin lesion scores are related to reduced disease severity independent of or dependent on housing system, respectively. In conclusion, our study identifies intrinsic animal-based measures using linear regression analysis that predicts resilience to infections in pigs.

18.
Vet Immunol Immunopathol ; 232: 110170, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33383553

RESUMO

Vaccination of neonatal pigs could be supportive to prevent porcine reproductive and respiratory syndrome virus (PRRSV), which is an important porcine pathogen causing worldwide welfare and health problems in pigs of different age classes. However, neonatal immunity substantially differs to adults, thus different vaccines may be required in neonateal pigs. We examined if the immunogenicity and efficacy of inactivated PRRSV (iPRRSV) vaccines in neonatal pigs could be improved with adjuvants containing oil-in water (O/W) emulsions with or without Toll-like receptor (TLR) agonists and by altering the delivery route from intramuscular (i.m.) to the skin. Three-day-old PRRSV-naïve piglets (n = 54, divided in 6 groups) received a prime vaccination and a booster vaccination four weeks later. The vaccine formulations consisted of different O/W emulsions (Montanide™ ISA28RVG (ISA28)), a squalene in water emulsion (SWE) for i.m. or a Stable Emulsion (SE) with squalene for skin vaccination) and/or a mixture of TLR1/2, 7/8 and 9 agonists (TLRa) combined with iPRRSV strain 07V063. These vaccines were delivered either i.m. (ISA28, SWE, TLRa or SWE + TLRa) or into the skin (skiSE + TLRa) with dissolving microneedle (DMN)-patches. All animals received a challenge with homologous PRRSV three weeks after booster vaccination. Specific antibodies, IFN-γ production and viremia were measured at several time-points after vaccination and/or challenge, while lung pathology was studied at necropsy. After booster vaccination, only ISA28 induced a specific antibody response while a specific T-cell IFN-γ response was generated in the SWE group, that was lower for ISA28, and absent in the other groups. This suggests that prime vaccination in neonates induced a specific immune response after booster vaccination, dependent on the emulsion formulation, but not dependent on the presence of the TLRa or delivery route. Despite the measured immune responses none of the vaccines showed any efficacy. Further research focused on the early immune response in draining lymph nodes is needed to elucidate the potential of TLR agonists in vaccines for neonatal pigs.


Assuntos
Adjuvantes Imunológicos/farmacologia , Imunogenicidade da Vacina , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Vacinas Virais/imunologia , Animais , Animais Recém-Nascidos , Citocinas/sangue , Imunidade Celular , Pulmão/patologia , Linfócitos/imunologia , Masculino , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/patologia , Suínos , Vacinas de Produtos Inativados/imunologia , Viremia/veterinária
19.
Vaccine ; 39(13): 1857-1869, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33678451

RESUMO

The skin is potentially an important vaccine delivery route facilitated by a high number of resident antigen presenting cells (APCs), which are known to be stimulated by different Toll-like receptor agonists (TLRa). In this study, neonatal and adult pigs were vaccinated in the skin using dissolving microneedle patches to investigate the immuno-stimulatory potential of different TLRa and possible age-dependent differences early after vaccination. These patches contained TLR1/2a (Pam3Cys), TLR7/8a (R848) or TLR9a (CpG ODN) combined with inactivated porcine reproductive and respiratory syndrome virus (PRRSV) or with an oil-in-water stable emulsion. Vaccinated skin and draining lymph nodes were analysed for immune response genes using microfluidic high-throughput qPCR to evaluate the early immune response and activation of APCs. Skin pathology and immunohistochemistry were used to evaluate the local immune responses and APCs in the vaccinated skin, respectively. In both neonatal and adult pigs, skin vaccination with TLR7/8a induced the most prominent early inflammatory and immune cell responses, particularly in the skin. Skin histopathology and immunohistochemistry of APCs showed comparable results for neonatal and adult pigs after vaccination with the different TLRa vaccines. However, in vaccinated neonatal pigs in the skin and draining lymph node more immune response related genes were upregulated compared to adult pigs. We showed that both neonatal and adult skin could be stimulated to develop an immune response, particularly after TLR7/8a vaccination, with age-dependent differences in regulation of immune genes. Therefore, age-dependent differences in local early immune responses should be considered when developing skin vaccines.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Vacinas Virais , Animais , Anticorpos Antivirais , Imunidade , Linfonodos , Suínos , Receptores Toll-Like , Vacinação
20.
J Anim Sci ; 98(6)2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32479635

RESUMO

The objective of this study is to investigate the effect of a maternal antibiotic administration during the last week of gestation on the early life intestinal development in neonatal piglets. Colonization of the gut with bacteria starts during birth and plays a major role in the intestinal and immunological development of the intestine. We demonstrate that maternal interventions induced changes in the sows (n = 6 to 8 per treatment) fecal microbiota diversity around birth (P < 0.001, day 1). Whole-genome microarray analysis in small intestinal samples of 1-d old piglets (n = 6 to 8 per treatment) showed significantly expressed genes (Padj < 0.05) which were involved in processes of tight junction formation and immunoglobulin production. Furthermore, when performing morphometry analysis, the number of goblet cells in jejunum was significantly (P < 0.001) lower in piglets from amoxicillin administered sows compared with the respective control piglets. Both significantly expressed genes (Padj < 0.05) and significant morphometry data (jejunum P < 0.05 and ileum P < 0.01) indicate that the crypts of piglets from amoxicillin administered sows deepen around weaning (day 26) as an effect of the amoxicillin administration in sows. The latter might imply that the intestinal development of piglets was delayed by maternal antibiotic administration. Taken together, these results show that maternally oral antibiotic administration changes in early life can affect intestinal development of the offspring piglets for a period of at least 5 wk after the maternal antibiotic administration was finished. These results show that modulation of the neonatal intestine is possible by maternal interventions.


Assuntos
Antibacterianos/administração & dosagem , Bactérias/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Suínos/fisiologia , Animais , Animais Recém-Nascidos , Bactérias/crescimento & desenvolvimento , Fezes/microbiologia , Feminino , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/crescimento & desenvolvimento , Trato Gastrointestinal/microbiologia , Gravidez , Suínos/crescimento & desenvolvimento , Suínos/microbiologia , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA