Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
2.
Proc Natl Acad Sci U S A ; 120(45): e2306476120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37906644

RESUMO

The IL-1 Family member IL-38 has been characterized primarily as an antiinflammatory cytokine in human and mouse models of systemic diseases. Here, we examined the role of IL-38 in the murine small intestine (SI). Immunostaining of SI revealed that IL-38 expression partially confines to intestinal stem cells. Cultures of intestinal organoids reveal IL-38 functions as a growth factor by increasing organoid size via inducing WNT3a. In contrast, organoids from IL-38-deficient mice develop more slowly. This reduction in size is likely due to the downregulation of intestinal stemness markers (i.e., Fzd5, Ephb2, and Olfm4) expression compared with wild-type organoids. The IL-38 binding to IL-1R6 and IL-1R9 is still a matter of debate. Therefore, to analyze the molecular mechanisms of IL-38 signaling, we also examined organoids from IL-1R9-deficient mice. Unexpectedly, these organoids, although significantly smaller than wild type, respond to IL-38, suggesting that IL-1R9 is not involved in IL-38 signaling in the stem cell crypt. Nevertheless, silencing of IL-1R6 disabled the organoid response to the growth property of IL-38, thus suggesting IL-1R6 as the main receptor used by IL-38 in the crypt compartment. In organoids from wild-type mice, IL-38 stimulation induced low concentrations of IL-1ß which contribute to organoid growth. However, high concentrations of IL-1ß have detrimental effects on the cultures that were prevented by treatment with recombinant IL-38. Overall, our data demonstrate an important regulatory function of IL-38 as a growth factor, and as an antiinflammatory molecule in the SI, maintaining homeostasis.


Assuntos
Mucosa Intestinal , Via de Sinalização Wnt , Animais , Camundongos , Homeostase , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interleucinas/metabolismo , Mucosa Intestinal/metabolismo , Organoides/metabolismo , Células-Tronco/metabolismo
3.
J Biol Chem ; 299(11): 105290, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37758001

RESUMO

Toll-like and interleukin-1/18 receptor/resistance (TIR) domain-containing proteins function as important signaling and immune regulatory molecules. TIR domain-containing proteins identified in eukaryotic and prokaryotic species also exhibit NAD+ hydrolase activity in select bacteria, plants, and mammalian cells. We report the crystal structure of the Acinetobacter baumannii TIR domain protein (AbTir-TIR) with confirmed NAD+ hydrolysis and map the conformational effects of its interaction with NAD+ using hydrogen-deuterium exchange-mass spectrometry. NAD+ results in mild decreases in deuterium uptake at the dimeric interface. In addition, AbTir-TIR exhibits EX1 kinetics indicative of large cooperative conformational changes, which are slowed down upon substrate binding. Additionally, we have developed label-free imaging using the minimally invasive spectroscopic method 2-photon excitation with fluorescence lifetime imaging, which shows differences in bacteria expressing native and mutant NAD+ hydrolase-inactivated AbTir-TIRE208A protein. Our observations are consistent with substrate-induced conformational changes reported in other TIR model systems with NAD+ hydrolase activity. These studies provide further insight into bacterial TIR protein mechanisms and their varying roles in biology.


Assuntos
Acinetobacter baumannii , NAD , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Deutério , Hidrolases/metabolismo , Mamíferos/metabolismo , NAD/metabolismo , Domínios Proteicos
4.
Methods ; 216: 51-57, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37302521

RESUMO

Advances in Nuclear Magnetic Resonance (NMR) spectroscopy have allowed for the identification and characterization of movements in enzymes over the last 20 years that has also revealed the complexities of allosteric coupling. For example, many of the inherent movements of enzymes, and proteins in general, have been shown to be highly localized but nonetheless still coupled over long distances. Such partial couplings provide challenges to both identifying allosteric networks of dynamic communication and determining their roles in catalytic function. We have developed an approach to help identify and engineer enzyme function, called Relaxation And Single Site Multiple Mutations (RASSMM). This approach is a powerful extension of mutagenesis and NMR that is based on the observation that multiple mutations to a single site distal to the active site allosterically induces different effects to networks. Such an approach generates a panel of mutations that can also be subjected to functional studies in order to match catalytic effects with changes to coupled networks. In this review, the RASSMM approach is briefly outlined together with two applications that include cyclophilin-A and Biliverdin Reductase B.


Assuntos
Proteínas , Mutação , Proteínas/química , Mutagênese , Espectroscopia de Ressonância Magnética , Domínio Catalítico , Regulação Alostérica
5.
Proc Natl Acad Sci U S A ; 116(12): 5514-5522, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30819901

RESUMO

Interleukin-37 (IL-37), a member of the IL-1 family of cytokines, is a fundamental suppressor of innate and acquired immunities. Here, we used an integrative approach that combines biophysical, biochemical, and biological studies to elucidate the unique characteristics of IL-37. Our studies reveal that single amino acid mutations at the IL-37 dimer interface that result in the stable formation of IL-37 monomers also remain monomeric at high micromolar concentrations and that these monomeric IL-37 forms comprise higher antiinflammatory activities than native IL-37 on multiple cell types. We find that, because native IL-37 forms dimers with nanomolar affinity, higher IL-37 only weakly suppresses downstream markers of inflammation whereas lower concentrations are more effective. We further show that IL-37 is a heparin binding protein that modulates this self-association and that the IL-37 dimers must block the activity of the IL-37 monomer. Specifically, native IL-37 at 2.5 nM reduces lipopolysaccharide (LPS)-induced vascular cell adhesion molecule (VCAM) protein levels by ∼50%, whereas the monomeric D73K mutant reduced VCAM by 90% at the same concentration. Compared with other members of the IL-1 family, both the N and the C termini of IL-37 are extended, and we show they are disordered in the context of the free protein. Furthermore, the presence of, at least, one of these extended termini is required for IL-37 suppressive activity. Based on these structural and biological studies, we present a model of IL-37 interactions that accounts for its mechanism in suppressing innate inflammation.


Assuntos
Tolerância Imunológica , Imunidade Inata , Interleucina-1/metabolismo , Linhagem Celular , Cristalografia por Raios X , Humanos , Tolerância Imunológica/imunologia , Tolerância Imunológica/fisiologia , Interleucina-1/genética , Interleucina-1/fisiologia , Espectroscopia de Ressonância Magnética , Multimerização Proteica
6.
Molecules ; 27(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35889366

RESUMO

Toll-interleukin receptor (TIR) domains have emerged as critical players involved in innate immune signaling in humans but are also expressed as potential virulence factors within multiple pathogenic bacteria. However, there has been a shortage of structural studies aimed at elucidating atomic resolution details with respect to their interactions, potentially owing to their dynamic nature. Here, we used a combination of biophysical and biochemical studies to reveal the dynamic behavior and functional interactions of a panel of both bacterial TIR-containing proteins and mammalian receptor TIR domains. Regarding dynamics, all three bacterial TIR domains studied here exhibited an inherent exchange that led to severe resonance line-broadening, revealing their intrinsic dynamic nature on the intermediate NMR timescale. In contrast, the three mammalian TIR domains studied here exhibited a range in terms of their dynamic exchange that spans multiple timescales. Functionally, only the bacterial TIR domains were catalytic towards the cleavage of NAD+, despite the conservation of the catalytic nucleophile on human TIR domains. Our development of NMR-based catalytic assays allowed us to further identify differences in product formation for gram-positive versus gram-negative bacterial TIR domains. Differences in oligomeric interactions were also revealed, whereby bacterial TIR domains self-associated solely through their attached coil-coil domains, in contrast to the mammalian TIR domains that formed homodimers and heterodimers through reactive cysteines. Finally, we provide the first atomic-resolution studies of a bacterial coil-coil domain and provide the first atomic model of the TIR domain from a human anti-inflammatory IL-1R8 protein that undergoes a slow inherent exchange.


Assuntos
Bactérias , Fatores de Virulência , Animais , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Bactérias Gram-Negativas/metabolismo , Humanos , Mamíferos/metabolismo , Transdução de Sinais , Fatores de Virulência/química
7.
Cytokine ; 137: 155334, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33128926

RESUMO

Interleukin (IL)-38 belongs to the IL-1 family and is part of the IL-36 subfamily due to its binding to the IL-36 Receptor (IL-1R6). In the current study, we assessed the anti-inflammatory properties of IL-38 in murine models of arthritis and systemic inflammation. First, the anti-inflammatory properties of mouse and human IL-38 precursors were compared to forms with a truncated N-terminus. In mouse bone marrow derived dendritic cells (BMDC), human and mouse IL-38 precursors with a truncation of the two N-terminal amino acids (3-152) suppressed LPS-induced IL-6. Recombinant human IL-38 (3-152) was further investigated for its immunomodulatory potential using four murine models of inflammatory disease: streptococcal cell wall (SCW)-induced arthritis, monosodium urate (MSU) crystal-induced arthritis, MSU crystal-induced peritonitis, and systemic endotoxemia. In each of these models IL-38 significantly reduced inflammation. In SCW and MSU crystal-induced arthritis, joint swelling, inflammatory cell influx, and synovial levels of IL-1ß, IL-6, and KC were reduced by 50% or greater. These suppressive properties of IL-38 in SCW-induced arthritis were independent of the anti-inflammatory co-receptor IL-1R8, as IL-38 reduced arthritis equally in IL-1R8 deficient and WT mice. In MSU crystal-induced peritonitis, IL-38 reduced hypothermia, while plasma IL-6 and KC and peritoneal KC levels were reduced by 65-70%. In the LPS endotoxemia model, IL-38 pretreatment reduced systemic IL-6, TNFα and KC. Furthermore, in ex vivo cultured bone marrow, LPS-induced IL-6, TNFα and KC were reduced by 75-90%. Overall, IL-38 exhibits broad anti-inflammatory properties in models of systemic and local inflammation and therefore may be an effective cytokine therapy.


Assuntos
Artrite Gotosa/prevenção & controle , Artrite/prevenção & controle , Modelos Animais de Doenças , Inflamação/prevenção & controle , Interleucinas/farmacologia , Proteínas Recombinantes/farmacologia , Sequência de Aminoácidos , Animais , Anti-Inflamatórios/farmacologia , Artrite/metabolismo , Artrite Gotosa/metabolismo , Células Cultivadas , Citocinas/sangue , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Interleucinas/genética , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , Peritonite/metabolismo , Peritonite/prevenção & controle , Homologia de Sequência de Aminoácidos
8.
Haematologica ; 106(11): 2971-2985, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33979990

RESUMO

Band 3 (anion exchanger 1; AE1) is the most abundant membrane protein in red blood cells, which in turn are the most abundant cells in the human body. A compelling model posits that, at high oxygen saturation, the N-terminal cytosolic domain of AE1 binds to and inhibits glycolytic enzymes, thus diverting metabolic fluxes to the pentose phosphate pathway to generate reducing equivalents. Dysfunction of this mechanism occurs during red blood cell aging or storage under blood bank conditions, suggesting a role for AE1 in the regulation of the quality of stored blood and efficacy of transfusion, a life-saving intervention for millions of recipients worldwide. Here we leveraged two murine models carrying genetic ablations of AE1 to provide mechanistic evidence of the role of this protein in the regulation of erythrocyte metabolism and storage quality. Metabolic observations in mice recapitulated those in a human subject lacking expression of AE11-11 (band 3 Neapolis), while common polymorphisms in the region coding for AE11-56 correlate with increased susceptibility to osmotic hemolysis in healthy blood donors. Through thermal proteome profiling and crosslinking proteomics, we provide a map of the red blood cell interactome, with a focus on AE11-56 and validate recombinant AE1 interactions with glyceraldehyde 3-phosphate dehydrogenase. As a proof-of-principle and to provide further mechanistic evidence of the role of AE1 in the regulation of redox homeo stasis of stored red blood cells, we show that incubation with a cell-penetrating AE11-56 peptide can rescue the metabolic defect in glutathione recycling and boost post-transfusion recovery of stored red blood cells from healthy human donors and genetically ablated mice.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito , Eritrócitos , Animais , Proteína 1 de Troca de Ânion do Eritrócito/química , Bancos de Sangue , Eritrócitos/metabolismo , Hemólise , Humanos , Camundongos , Oxirredução , Via de Pentose Fosfato
9.
Cell Mol Neurobiol ; 36(3): 459-70, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26951563

RESUMO

In Huntington's disease (HD) the imperfect expanded CAG repeat in the first exon of the HTT gene leads to the generation of a polyglutamine (polyQ) protein, which has some neuronal toxicity, potentially mollified by formation of aggregates. Accumulated research, reviewed here, implicates both the polyQ protein and the expanded repeat RNA in causing toxicity leading to neurodegeneration in HD. Different theories have emerged as to how the neurodegeneration spreads throughout the brain, with one possibility being the transport of toxic protein and RNA in extracellular vesicles (EVs). Most cell types in the brain release EVs and these have been shown to contain neurodegenerative proteins in the case of prion protein and amyloid-beta peptide. In this study, we used a model culture system with an overexpression of HTT-exon 1 polyQ-GFP constructs in human 293T cells and found that the EVs did incorporate both the polyQ-GFP protein and expanded repeat RNA. Striatal mouse neural cells were able to take up these EVs with a consequent increase in the green fluorescent protein (GFP) and polyQ-GFP RNAs, but with no evidence of uptake of polyQ-GFP protein or any apparent toxicity, at least over a relatively short period of exposure. A differentiated striatal cell line expressing endogenous levels of Hdh mRNA containing the expanded repeat incorporated more of this mRNA into EVs as compared to similar cells expressing this mRNA with a normal repeat length. These findings support the potential of EVs to deliver toxic expanded trinucleotide repeat RNAs from one cell to another, but further work will be needed to evaluate potential EV and cell-type specificity of transfer and effects of long-term exposure. It seems likely that expanded HD-associated repeat RNA may appear in biofluids and may have use as biomarkers of disease state and response to therapy.


Assuntos
Vesículas Extracelulares/metabolismo , Doença de Huntington/metabolismo , Peptídeos/metabolismo , RNA/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Animais , Células Cultivadas , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteína Huntingtina/metabolismo , Camundongos , Neostriado/metabolismo , Neostriado/patologia , Reação em Cadeia da Polimerase em Tempo Real
10.
Semin Cancer Biol ; 28: 14-23, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24783980

RESUMO

Different types of RNAs identified thus far represent a diverse group of macromolecules that are involved in the regulation of different biological processes. RNA is generally thought to be localized primarily in the nucleus and cytoplasm; however, some types of RNA have been detected in the extracellular milieu. These extracellular RNA (exRNA) molecules are protected from degradation and it is now widely accepted that extracellular vesicles and ribonucleoprotein particles serve as transport vehicles for exRNA among cells. The functional consequence of this transfer of genetic information probably encompasses a broad range of normal developmental and physiologic processes in many organisms. This review will focus on the role of exRNA communication in cancer. We will focus on different types of RNA species identified and characterized within tumor-derived extracellular vesicles. Further, we will describe the role of exRNAs in cancer progression, as well as their potential for use as diagnostic biomarkers and therapeutic tools for monitoring and treating cancer, respectively.


Assuntos
Neoplasias/metabolismo , Neoplasias/patologia , RNA/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Comunicação Celular/fisiologia , Progressão da Doença
11.
Biochim Biophys Acta ; 1838(11): 2954-65, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25102470

RESUMO

Small endogenous vesicles called exosomes are beginning to be explored as drug delivery vehicles. The in vivo targets of exosomes are poorly understood; however, they are believed to be important in cell-to-cell communication and may play a prominent role in cancer metastasis. We aimed to elucidate whether cancer derived exosomes can be used as drug delivery vehicles that innately target tumors over normal tissue. Our in vitro results suggest that while there is some specificity towards cancer cells over "immortalized" cells, it is unclear if the difference is sufficient to achieve precise in vivo targeting. Additionally, we found that exosomes associate with their cellular targets to a significantly greater extent (>10-fold) than liposomes of a similar size. Studies on the association of liposomes mimicking the unique lipid content of exosomes revealed that the lipid composition contributes significantly to cellular adherence/internalization. Cleavage of exosome surface proteins yielded exosomes exhibiting reduced association with their cellular targets, demonstrating the importance of proteins in binding/internalization. Furthermore, although acidic conditions are known to augment the metastatic potential of tumors, we found that cells cultured at low pH released exosomes with significantly less potential for cellular association than cells cultured at physiological pH.

12.
Bioconjug Chem ; 25(10): 1777-84, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25220352

RESUMO

A method for conjugation of ligands to the surface of exosomes was developed using click chemistry. Copper-catalyzed azide alkyne cycloaddition (click chemistry) is ideal for biocojugation of small molecules and macromolecules to the surface of exosomes, due to fast reaction times, high specificity, and compatibility in aqueous buffers. Exosomes cross-linked with alkyne groups using carbodiimide chemistry were conjugated to a model azide, azide-fluor 545. Conjugation had no effect on the size of exosomes, nor was there any change in the extent of exosome adherence/internalization with recipient cells, suggesting the reaction conditions were mild on exosome structure and function. We further investigated the extent of exosomal protein modification with alkyne groups. Using liposomes with surface alkyne groups of a similar size and concentration to exosomes, we estimated that approximately 1.5 alkyne groups were present for every 150 kDa of exosomal protein.


Assuntos
Alcinos/química , Azidas/química , Química Click , Exossomos/química , Animais , Linhagem Celular , Cobre/química , Reagentes de Ligações Cruzadas/química , Reação de Cicloadição , Camundongos , Propriedades de Superfície
13.
mSphere ; 9(3): e0000624, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38380941

RESUMO

Iron acquisition is a key feature dictating the success of pathogen colonization and infection. Pathogens scavenging iron from the host must contend with other members of the microbiome similarly competing for the limited pool of bioavailable iron, often in the form of heme. In this study, we identify a beneficial role for the heme-binding protein hemophilin (Hpl) produced by the non-pathogenic bacterium Haemophilus haemolyticus against its close relative, the opportunistic respiratory tract pathogen non-typeable Haemophilus influenzae (NTHi). Using a mouse model, we found that pre-exposure to H. haemolyticus significantly reduced NTHi colonization of the upper airway and impaired NTHi infection of the lungs in an Hpl-dependent manner. Further, treatment with recombinant Hpl was sufficient to decrease airway burdens of NTHi without exacerbating lung immunopathology or systemic inflammation. Instead, mucosal production of the neutrophil chemokine CXCL2, lung myeloperoxidase, and serum pro-inflammatory cytokines IL-6 and TNFα were lower in Hpl-treated mice. Mechanistically, H. haemolyticus suppressed NTHi growth and adherence to human respiratory tract epithelial cells through the expression of Hpl, and recombinant Hpl could recapitulate these effects. Together, these findings indicate that heme sequestration by non-pathogenic, Hpl-producing H. haemolyticus is protective against NTHi colonization and infection. IMPORTANCE: The microbiome provides a critical layer of protection against infection with bacterial pathogens. This protection is accomplished through a variety of mechanisms, including interference with pathogen growth and adherence to host cells. In terms of immune defense, another way to prevent pathogens from establishing infections is by limiting the availability of nutrients, referred to as nutritional immunity. Restricting pathogen access to iron is a central component of this approach. Here, we uncovered an example where these two strategies intersect to impede infection with the respiratory tract bacterial pathogen Haemophilus influenzae. Specifically, we find that a non-pathogenic (commensal) bacterium closely related to H. influenzae called Haemophilus haemolyticus improves protection against H. influenzae by limiting the ability of this pathogen to access iron. These findings suggest that beneficial members of the microbiome improve protection against pathogen infection by effectively contributing to host nutritional immunity.


Assuntos
Infecções por Haemophilus , Haemophilus influenzae , Haemophilus , Humanos , Heme/metabolismo , Pulmão/microbiologia , Ferro
14.
Front Mol Biosci ; 10: 1244587, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645217

RESUMO

Biliverdin Reductase B (BLVRB) is an NADPH-dependent reductase that catalyzes the reduction of multiple substrates and is therefore considered a critical cellular redox regulator. In this study, we sought to address whether both structural and dynamics changes occur between different intermediates of the catalytic cycle and whether these were relegated to just the active site or the entirety of the enzyme. Through X-ray crystallography, we determined the apo BLVRB structure for the first time, revealing subtle global changes compared to the holo structure and identifying the loss of a critical hydrogen bond that "clamps" the R78-loop over the coenzyme. Amide and Cα chemical shift perturbations were used to identify environmental and secondary structural changes between intermediates, with more distant global changes observed upon coenzyme binding compared to substrate interactions. NMR relaxation rate measurements provided insights into the dynamic behavior of BLVRB during the catalytic cycle. Specifically, the inherently dynamic R78-loop that becomes ordered upon coenzyme binding persists through the catalytic cycle while similar regions experience dynamic exchange. However, the dynamic exchange processes were found to differ through the catalytic cycle with several groups of residues exhibiting similar dynamic responses. Finally, both local and distal structural and dynamic changes occur within BLVRB that are dependent solely on the oxidative state of the coenzyme. Thus, through a comprehensive analysis here, this study revealed structural and dynamic alterations in BLVRB through its catalytic cycle that are not simply relegated to the active site, but instead, are allosterically coupled throughout the enzyme.

15.
Protein Sci ; 32(4): e4603, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36807437

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) nucleocapsid protein is the most abundantly expressed viral protein during infection where it targets both RNA and host proteins. However, identifying how a single viral protein interacts with so many different targets remains a challenge, providing the impetus here for identifying the interaction sites through multiple methods. Through a combination of nuclear magnetic resonance (NMR), electron microscopy, and biochemical methods, we have characterized nucleocapsid interactions with RNA and with three host proteins, which include human cyclophilin-A, Pin1, and 14-3-3τ. Regarding RNA interactions, the nucleocapsid protein N-terminal folded domain preferentially interacts with smaller RNA fragments relative to the C-terminal region, suggesting an initial RNA engagement is largely dictated by this N-terminal region followed by weaker interactions to the C-terminal region. The nucleocapsid protein forms 10 nm ribonuclear complexes with larger RNA fragments that include 200 and 354 nucleic acids, revealing its potential diversity in sequestering different viral genomic regions during viral packaging. Regarding host protein interactions, while the nucleocapsid targets all three host proteins through its serine-arginine-rich region, unstructured termini of the nucleocapsid protein also engage host cyclophilin-A and host 14-3-3τ. Considering these host proteins play roles in innate immunity, the SARS-CoV-2 nucleocapsid protein may block the host response by competing interactions. Finally, phosphorylation of the nucleocapsid protein quenches an inherent dynamic exchange process within its serine-arginine-rich region. Our studies identify many of the diverse interactions that may be important for SARS-CoV-2 pathology during infection.


Assuntos
COVID-19 , RNA , Humanos , SARS-CoV-2/metabolismo , Ciclofilinas/análise , Nucleocapsídeo/química , Nucleocapsídeo/metabolismo , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Arginina , Serina , Peptidilprolil Isomerase de Interação com NIMA/análise
16.
Cancer Cell Int ; 12(1): 19, 2012 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-22631225

RESUMO

BACKGROUND: Although the peptidyl-prolyl isomerase, cyclophilin-A (peptidyl-prolyl isomerase, PPIA), has been studied for decades in the context of its intracellular functions, its extracellular roles as a major contributor to both inflammation and multiple cancers have more recently emerged. A wide range of activities have been ascribed to extracellular PPIA that include induction of cytokine and matrix metalloproteinase (MMP) secretion, which potentially underlie its roles in inflammation and tumorigenesis. However, there have been conflicting reports as to which particular signaling events are under extracellular PPIA regulation, which may be due to either cell-dependent responses and/or the use of commercial preparations recently shown to be highly impure. METHODS: We have produced and validated the purity of recombinant PPIA in order to subject it to a comparative analysis between different cell types. Specifically, we have used a combination of multiple methods such as luciferase reporter screens, translocation assays, phosphorylation assays, and nuclear magnetic resonance to compare extracellular PPIA activities in several different cell lines that included epithelial and monocytic cells. RESULTS: Our findings have revealed that extracellular PPIA activity is cell type-dependent and that PPIA signals via multiple cellular receptors beyond the single transmembrane receptor previously identified, Extracellular Matrix MetalloPRoteinase Inducer (EMMPRIN). Finally, while our studies provide important insight into the cell-specific responses, they also indicate that there are consistent responses such as nuclear factor kappa B (NFκB) signaling induced in all cell lines tested. CONCLUSIONS: We conclude that although extracellular PPIA activates several common pathways, it also targets different receptors in different cell types, resulting in a complex, integrated signaling network that is cell type-specific.

17.
Commun Biol ; 5(1): 1190, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36336763

RESUMO

The mucosal adaptive immune response is dependent on the production of IgA antibodies and particularly IgA1, yet opportunistic bacteria have evolved mechanisms to specifically block this response by producing IgA1 proteases (IgA1Ps). Our lab was the first to describe the structures of a metal-dependent IgA1P (metallo-IgA1P) produced from Gram-positive Streptococcus pneumoniae both in the absence and presence of its IgA1 substrate through cryo-EM single particle reconstructions. This prior study revealed an active-site gating mechanism reliant on substrate-induced conformational changes to the enzyme that begged the question of whether such a mechanism is conserved among the wider Gram-positive metallo-IgA1P subfamily of virulence factors. Here, we used cryo-EM to characterize the metallo-IgA1P of a more distantly related family member from Gemella haemolysans, an emerging opportunistic pathogen implicated in meningitis, endocarditis, and more recently bacteremia in the elderly. While the substrate-free structures of these two metallo-IgA1Ps exhibit differences in the relative starting positions of the domain responsible for gating substrate, the enzymes have similar domain orientations when bound to IgA1. Together with biochemical studies that indicate these metallo-IgA1Ps have similar binding affinities and activities, these data indicate that metallo-IgA1P binding requires the specific IgA1 substrate to open the enzymes for access to their active site and thus, largely conform to an "induced fit" model.


Assuntos
Imunoglobulina A , Metaloproteases , Humanos , Idoso , Imunoglobulina A/metabolismo , Streptococcus/metabolismo , Bactérias/metabolismo , Fatores de Virulência
18.
Front Mol Biosci ; 8: 691208, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095235

RESUMO

The biliverdin reductase B (BLVRB) class of enzymes catalyze the NADPH-dependent reduction of multiple flavin substrates and are emerging as critical players in cellular redox regulation. However, the role of dynamics and allostery have not been addressed, prompting studies here that have revealed a position 15 Å away from the active site within human BLVRB (T164) that is inherently dynamic and can be mutated to control global micro-millisecond motions and function. By comparing the inherent dynamics through nuclear magnetic resonance (NMR) relaxation approaches of evolutionarily distinct BLVRB homologues and by applying our previously developed Relaxation And Single Site Multiple Mutations (RASSMM) approach that monitors both the functional and dynamic effects of multiple mutations to the single T164 site, we have discovered that the most dramatic mutagenic effects coincide with evolutionary changes and these modulate coenzyme binding. Thus, evolutionarily changing sites distal to the active site serve as dynamic "dials" to globally modulate motions and function. Despite the distal dynamic and functional coupling modulated by this site, micro-millisecond motions span an order of magnitude in their apparent kinetic rates of motions. Thus, global dynamics within BLVRB are a collection of partially coupled motions tied to catalytic function.

19.
J Mol Biol ; 433(15): 167108, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34161778

RESUMO

The nucleocapsid protein is one of four structural proteins encoded by SARS-CoV-2 and plays a central role in packaging viral RNA and manipulating the host cell machinery, yet its dynamic behavior and promiscuity in nucleotide binding has made standard structural methods to address its atomic-resolution details difficult. To begin addressing the SARS-CoV-2 nucleocapsid protein interactions with both RNA and the host cell along with its dynamic behavior, we have specifically focused on the folded N-terminal domain (NTD) and its flanking regions using nuclear magnetic resonance solution studies. Studies performed here reveal a large repertoire of interactions, which includes a temperature-dependent self-association mediated by the disordered flanking regions that also serve as binding sites for host cell cyclophilin-A while nucleotide binding is largely mediated by the central NTD core. NMR studies that include relaxation experiments have revealed the complicated dynamic nature of this viral protein. Specifically, while much of the N-terminal core domain exhibits micro-millisecond motions, a central ß-hairpin shows elevated inherent flexibility on the pico-nanosecond timescale and the serine/arginine-rich region of residues 176-209 undergoes multiple exchange phenomena. Collectively, these studies have begun to reveal the complexities of the nucleocapsid protein dynamics and its preferred interaction sites with its biological targets.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Mutação , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/química , Sítios de Ligação , Evolução Molecular , Células HEK293 , Humanos , Evasão da Resposta Imune , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética
20.
JCI Insight ; 6(3)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33351786

RESUMO

Computational models based on recent maps of the RBC proteome suggest that mature erythrocytes may harbor targets for common drugs. This prediction is relevant to RBC storage in the blood bank, in which the impact of small molecule drugs or other xenometabolites deriving from dietary, iatrogenic, or environmental exposures ("exposome") may alter erythrocyte energy and redox metabolism and, in so doing, affect red cell storage quality and posttransfusion efficacy. To test this prediction, here we provide a comprehensive characterization of the blood donor exposome, including the detection of common prescription and over-the-counter drugs in blood units donated by 250 healthy volunteers in the Recipient Epidemiology and Donor Evaluation Study III Red Blood Cell-Omics (REDS-III RBC-Omics) Study. Based on high-throughput drug screenings of 1366 FDA-approved drugs, we report that approximately 65% of the tested drugs had an impact on erythrocyte metabolism. Machine learning models built using metabolites as predictors were able to accurately predict drugs for several drug classes/targets (bisphosphonates, anticholinergics, calcium channel blockers, adrenergics, proton pump inhibitors, antimetabolites, selective serotonin reuptake inhibitors, and mTOR), suggesting that these drugs have a direct, conserved, and substantial impact on erythrocyte metabolism. As a proof of principle, here we show that the antacid ranitidine - though rarely detected in the blood donor population - has a strong effect on RBC markers of storage quality in vitro. We thus show that supplementation of blood units stored in bags with ranitidine could - through mechanisms involving sphingosine 1-phosphate-dependent modulation of erythrocyte glycolysis and/or direct binding to hemoglobin - improve erythrocyte metabolism and storage quality.


Assuntos
Doadores de Sangue , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Expossoma , Medicamentos sem Prescrição/efeitos adversos , Medicamentos sem Prescrição/farmacocinética , Medicamentos sob Prescrição/efeitos adversos , Medicamentos sob Prescrição/farmacocinética , Adolescente , Adulto , Idoso , Animais , Metabolismo Energético/efeitos dos fármacos , Transfusão de Eritrócitos , Feminino , Glicólise/efeitos dos fármacos , Voluntários Saudáveis , Hemoglobinas/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Técnicas In Vitro , Aprendizado de Máquina , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Modelos Biológicos , Oxirredução/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Ranitidina/farmacologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA