RESUMO
Lactobacilli and estrogens play essential roles in vaginal homeostasis. We investigated the potential direct effect of 17ß-estradiol on a vaginal strain of Lactobacillus crispatus, the major bacterial species of the vaginal microbiota. 17ß-estradiol (10-6 to 10-10 M) had no effect on L. crispatus growth, but markedly affected the membrane dynamics of this bacterium. This effect appeared consistent with a signal transduction process. The surface polarity and aggregation potential of the bacterium were unaffected by exposure to 17ß-estradiol, but its mean size was significantly reduced. 17ß-estradiol also promoted biosurfactant production by L. crispatus and adhesion to vaginal VK2/E6E7 cells, but had little effect on bacterial biofilm formation activity. Bioinformatic analysis of L. crispatus identified a membrane lipid raft-associated stomatin/prohibitin/flotillin/HflK domain containing protein as a potential 17ß-estradiol binding site. Overall, our results reveal direct effects of 17ß-estradiol on L. crispatus. These effects are of potential importance in the physiology of the vaginal environment, through the promotion of lactobacillus adhesion to the mucosa and protection against pathogens.
Assuntos
Estradiol/fisiologia , Lactobacillus crispatus/fisiologia , Vagina/microbiologia , Adesão Celular , Agregação Celular , Feminino , Humanos , Fluidez de Membrana , Receptores de Estradiol/metabolismoRESUMO
We previously showed that the physiological concentration of 17ß-estradiol in the vaginal environment is sufficient to affect the membrane dynamics and adhesion phenotype of the Lactobacillus crispatus strain CIP104459. However, L. crispatus is a heterogeneous species. Here, we investigated the effect of 17ß-estradiol on the recently isolated L. crispatus vaginal strain V4, related to a cluster distant from CIP104459 and at the limit of being a different subspecies. Grown in the same medium, the two strains expressed a highly similar pool of proteins. However, in contrast to CIP104459, L. crispatus V4 showed high aggregation potential and 17ß-estradiol promoted this phenotype. This effect was associated with large changes in cell-surface polarity and Lewis acid/base properties. In addition, we observed no effect on the membrane dynamics, contrary to CIP104459. These results can be explained by differences in the properties and organization of the S layer between the two strains. However, as for CIP104459, 17ß-estradiol increased biosurfactant production of L. crispatus V4 and their adhesion to vaginal cells. This suggests that 17ß-estradiol agonists would be valuable tools to favor a stable re-implantation of L. crispatus in the vaginal mucosa.
Assuntos
Estradiol/farmacologia , Lactobacillus crispatus/metabolismo , Vagina/microbiologia , Feminino , Humanos , Lactobacillus crispatus/isolamento & purificaçãoRESUMO
We report the draft genome sequence of Lactobacillus crispatus CIP 104459, isolated from a human vaginal swab. This draft genome consists of 1,993,673 bp, with 36.8% G+C content and 2,024 predicted protein-encoding sequences.
RESUMO
Lactobacillus crispatus strain V4 was isolated from a vaginal swab from a healthy nonmenopausal 35-year-old French woman. We report here its draft genome sequence of 2,091,889 bp, with an average G+C content of 37.02%.
RESUMO
BACKGROUND: The aim of this study was to demonstrate that a defined cosmetic composition is able to induce an increase in the production of sulfated glycosaminoglycans (sGAGs) and/or proteoglycans and finally to demonstrate that the composition, through its combined action of enzyme production and synthesis of macromolecules, modulates organization and skin surface aspect with a benefit in antiaging applications. MATERIALS AND METHODS: Gene expression was studied by quantitative reverse transcription polymerase chain reaction using normal human dermal fibroblasts isolated from a 45-year-old donor skin dermis. De novo synthesis of sGAGs and proteoglycans was determined using Blyscan™ assay and/or immunohistochemical techniques. These studies were performed on normal human dermal fibroblasts (41- and 62-year-old donors) and on human skin explants. Dermis organization was studied either ex vivo on skin explants using bi-photon microscopy and transmission electron microscopy or directly in vivo on human volunteers by ultrasound technique. Skin surface modification was investigated in vivo using silicone replicas coupled with macrophotography, and the mechanical properties of the skin were studied using Cutometer. RESULTS: It was first shown that mRNA expression of several genes involved in the synthesis pathway of sGAG was stimulated. An increase in the de novo synthesis of sGAGs was shown at the cellular level despite the age of cells, and this phenomenon was clearly related to the previously observed stimulation of mRNA expression of genes. An increase in the expression of the corresponding core protein of decorin, perlecan, and versican and a stimulation of their respective sGAGs, such as chondroitin sulfate and heparan sulfate, were found on skin explants. The biosynthesis of macromolecules seems to be correlated at the microscopic level to a better organization and quality of the dermis, with collagen fibrils having homogenous diameters. The dermis seems to be compacted as observed on images obtained by two-photon microscopy and ultrasound imaging. At the macroscopic level, this dermis organization shows a smoothed profile similar to a younger skin, with improved mechanical properties such as firmess. CONCLUSION: The obtained results demonstrate that the defined cosmetic composition induces the synthesis of sGAGs and proteoglycans, which contributes to the overall dermal reorganization. This activity in the dermis in turn impacts the surface and mechanical properties of the skin.
RESUMO
BACKGROUND: 3,4,5-Trihydroxybenzoic acid glucoside (THBG), a molecule produced by an original biocatalysis-based technology, was assessed in this study with respect to its skin photoprotective capacity and its skin color control property on Asian-type skin at a clinical level and on skin explant culture models. METHODS: The double-blinded clinical study was done in comparison to a vehicle by the determination of objective color parameters thanks to recognized quantitative and qualitative analysis tools, including Chroma-Meter, VISIA-CR™, and SIAscope™. Determination of L* (brightness), a* and b* (green-red and blue-yellow chromaticity coordinates), individual typology angle, and C* (chroma) and h* (hue angle) parameters using a Chroma-Meter demonstrated that THBG is able to modify skin color while quantification of ultraviolet (UV) spots by VISIA-CR™ confirmed its photoprotective effect. The mechanism of action of THBG molecule was determined using explant skin culture model coupled to histological analysis (epidermis melanin content staining). RESULTS: We have demonstrated that THBG was able to modulate significantly several critical parameters involved in skin color control such as L* (brightness), a* (redness), individual typology angle (pigmentation), and hue angle (yellowness in this study), whereas no modification occurs on b* and C* parameters. We have demonstrated using histological staining that THBG decrease epidermis melanin content under unirradiated and irradiated condition. We also confirmed that THBG molecule is not a sunscreen agent. CONCLUSION: This study demonstrated that THBG controls skin tone via the inhibition of melanin synthesis as well as the modulation of skin brightness, yellowness, and redness.
RESUMO
Cellular senescence and apoptosis are two metabolically related and seemingly synergistic processes that are involved in tissue maintenance and homeostasis, anti-tumor protection, and age-related diseases. Despite this apparent co-operativity, senescence can inhibit apoptosis in certain conditions. Here, we describe senescence-apoptosis relationships in human epidermal cells by comparing apoptosis-related effector concentrations in keratinocyte cultures and epidermal skin cells at various stages of ageing. Using western blots, flow cytometry, enzyme-linked immuno-sorbent assay (ELISA) and immunofluorescence, we determined the amounts of apoptotic effectors in aged cells compared to young ones, in parallel with beta-galactosidase activity at neutral pH (senescence-associated beta-galactosidase, SA beta-gal), found to be a good indicator of cellular ageing. We observed increased levels of several Fas-mediated apoptosis effectors (Fas, Fas ligand, FADD, FLICE), both in cell cultures at advanced passages and in skin cells of aged donors (above 45 years). Furthermore, we found that while the pro-apoptotic p53 increased, the anti-apoptotic Bcl-2 declined. In spite of this, the extent of spontaneous apoptosis did not change in senescent keratinocyte cultures. The cells, however, became notably more susceptible to apoptosis when kept in exhausted growth medium, or upon Fas receptor activation by anti-Fas antibody binding. Our results are consistent with recent findings in senescent fibroblasts, showing that the death-signaling pathway is enhanced at senescence.