Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Energy Mater ; 5(3): 3845-3853, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35573054

RESUMO

Thermoelectric technology offers great potential for converting waste heat into electrical energy and is an emission-free technique for solid-state cooling. Conventional high-performance thermoelectric materials such as Bi2Te3 and PbTe use rare or toxic elements. Sulfur is an inexpensive and nontoxic alternative to tellurium. However, achieving high efficiencies with Bi2S3 is challenging due to its high electrical resistivity that reduces its power factor. Here, we report Bi2S3 codoped with Cr and Cl to enhance its thermoelectric properties. An enhanced conductivity was achieved due to an increase in the carrier concentration by the substitution of S with Cl. High values of the Seebeck coefficients were obtained despite high carrier concentrations; this is attributed to an increase in the effective mass, resulting from the magnetic drag introduced by the magnetic Cr dopant. A peak power factor of 566 µW m-1 K-2 was obtained for a cast sample of Bi2-x/3Cr x/3S3-x Cl x with x = 0.01 at 320 K, as high as the highest values reported in the literature for sintered samples. These results support the success of codoping thermoelectric materials with isovalent magnetic and carrier concentration tuning elements to enhance the thermoelectric properties of eco-friendly materials.

2.
ACS Appl Mater Interfaces ; 14(41): 46738-46747, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36194853

RESUMO

The magneto-optical and dielectric behavior of M-type hexaferrites as permanent magnets in the THz band is essential for potential applications like microwave absorbers and antennas, while are rarely reported in recent years. In this work, single-phase SrFe12-xNbxO19 hexaferrite ceramics were prepared by the conventional solid-state sintering method. Temperature dependence of dielectric parameters was investigated here to determine the relationship between dielectric response and magnetic phase transition. The saturated magnetization increases by nearly 12%, while the coercive field decreases by 30% in the x = 0.03 composition compared to that of the x = 0.00 sample. Besides, the Nb substitution improves the magneto-optical behavior in the THz band by comparing the Faraday rotation parameter from 0.75 (x = 0.00) to 1.30 (x = 0.03). The changes in the magnetic properties are explained by a composition-driven increase of the net magnetic moment and enhanced ferromagnetic exchange coupling. The substitution of the donor dopant Nb on the Fe site is a feasible way to obtain multifunctional M-type hexaferrites as preferred candidates for permanent magnets, sensors, and other electronic devices.

3.
ACS Appl Mater Interfaces ; 13(45): 53492-53503, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34726054

RESUMO

In this spotlight on applications, we describe our recent progress on the terahertz (THz) characterization of linear and nonlinear dielectrics for broadening their applications in different electrical devices. We begin with a discussion on the behavior of dielectrics over a broadband of frequencies and describe the main characteristics of ferroelectrics, as they are an important category of nonlinear dielectrics. We then move on to look at the influence of point defects, porosities, and interfaces, including grain boundaries and domain walls, on the dielectric properties at THz frequencies. Based on our studies on linear dielectrics, we show that THz characterization is able to probe the effect of porosities, point defects, shear planes, and grain boundaries to improve dielectric properties for telecommunication applications. Further, we demonstrate that THz measurements on relaxor ferroelectrics can be successfully used to study the reversibility of the electric field-induced phase transitions, providing guidance for improving their energy storage efficiency in capacitors. Finally, we show that THz characterization can be used to characterize the effect of domain walls in ferroelectrics. In particular, our studies indicate that the dipoles located within domain walls provide a lower contribution to the permittivity at THz frequencies than the dipoles present in domains. The new findings could help develop a new memory device based on nondestructive reading operations using a THz beam.

4.
Materials (Basel) ; 13(7)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244703

RESUMO

The structural, thermal, electrical and mechanical properties of fully dense B4C ceramics, sintered using Spark Plasma Sintering (SPS), were studied and compared to the properties of B4C ceramics previously published in the literature. New results on B4C's mechanical responses were obtained by nanoindentation and ring-on-ring biaxial strength testing. The findings contribute to a more complete knowledge of the properties of B4C ceramics, an important material in many industrial applications.

5.
Materials (Basel) ; 11(9)2018 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-30200520

RESUMO

Wood-derived porous graphitic biocarbons with hierarchical structures were obtained by high-temperature (2200⁻2400 °C) non-catalytic graphitization, and their mechanical, electrical and thermal properties are reported for the first time. Compared to amorphous biocarbon produced at 1000 °C, the graphitized biocarbon-2200 °C and biocarbon-2400 °C exhibited increased compressive strength by ~38% (~36 MPa), increased electrical conductivity by ~8 fold (~29 S/cm), and increased thermal conductivity by ~5 fold (~9.5 W/(m·K) at 25 °C). The increase of duration time at 2200 °C contributed to increased thermal conductivity by ~12%, while the increase of temperature from 2200 to 2400 °C did not change their thermal conductivity, indicating that 2200 °C is sufficient for non-catalytic graphitization of wood-derived biocarbon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA