Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem A ; 124(7): 1240-1252, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31976674

RESUMO

The conformer-specific reactivity of gas-phase pyruvic acid following the S1(nπ*) ← S0 excitation at λmax = 350 nm (290-380 nm) and the effect of water are investigated for the two lowest energy conformers. Conformer-specific gas-phase pyruvic acid photolysis rate constants and their respective populations are measured by monitoring their distinct vibrational OH-stretching frequencies. The geometry, relative energies, fundamental vibrational frequencies, and electronic transitions of the pyruvic acid conformers and their monohydrated complexes are calculated with density functional theory and ab initio methods. Results from experiment and theory show that the more stable conformer with an intramolecular hydrogen bond dominates the gas-phase photolysis of pyruvic acid. Water greatly affects the gas-phase pyruvic acid conformer population and photochemistry through hydrogen bonding interactions. The addition of water decreases the gas-phase relative population of the more stable conformer and decreases the molecule's gas-phase photolysis rate constants. The theoretical results show that even a single water molecule interrupts the intramolecular hydrogen bond, which is essential for the efficient photodissociation of gas-phase pyruvic acid. Results of this study suggest that the aqueous-phase photochemistry of pyruvic acid proceeds through hydrogen-bonded conformers lacking an intramolecular hydrogen bond.

2.
J Phys Chem A ; 121(44): 8348-8358, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29035055

RESUMO

Pyruvic acid is an atmospherically abundant α-keto-acid that degrades efficiently from the troposphere via gas-phase photolysis. To explore conditions relevant to the environment, 2-12 ppm pyruvic acid is irradiated by a solar simulator in the environmental simulation chamber, CESAM. The combination of the long path length available in the chamber and its low surface area to volume ratio allows us to quantitatively examine the quantum yield and photochemical products of pyruvic acid. Such details are new to the literature for the low initial concentrations of pyruvic acid employed here. We determined photolysis quantum yields of ϕobsN2 = 0.84 ± 0.1 in nitrogen and ϕobsAir = 3.2 ± 0.5 in air, which are higher than those reported by previous studies that used higher partial pressures of pyruvic acid. The quantum yield greater than unity in air is due to secondary chemistry, driven by O2, that emerges under the conditions in these experiments. The low concentration of pyruvic acid and the resulting oxygen effect also alter the product distribution such that acetic acid, rather than acetaldehyde, is the primary product in air. These results indicate that tropospheric pyruvic acid may degrade in part via photoinduced mechanisms that are different than previously expected.

3.
J Phys Chem A ; 121(18): 3327-3339, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28388049

RESUMO

Aerosol and molecular processing in the atmosphere occurs in a complex and variable environment consisting of multiple phases and interfacial regions. To explore the effects of such conditions on the reactivity of chemical systems, we employ an environmental simulation chamber to investigate the multiphase photolysis of pyruvic acid, which photoreacts in the troposphere in aqueous particles and in the gas phase. Upon irradiation of nebulized pyruvic acid, acetic acid and carbon dioxide are rapidly generated, which is consistent with previous literature on the bulk phase photolysis reactions. Additionally, we identify a new C6 product, zymonic acid, a species that has not previously been reported from pyruvic acid photolysis under any conditions. Its observation here, and corresponding spectroscopic signatures, indicates it could be formed by heterogeneous reactions at the droplet surface. Prior studies of the aqueous photolysis of pyruvic acid have shown that high-molecular-weight compounds are formed via radical reactions; however, they are inhibited by the presence of oxygen, leading to doubt as to whether the chemistry would occur in the atmosphere. Identification of dimethyltartaric acid from the photolysis of multiphase pyruvic acid in air confirms radical polymerization chemistry can compete with oxygen reactions to some extent under aerobic conditions. Evidence of additional polymerization within the particles during irradiation is suggested by the increasing viscosity and organic content of the particles. The implications of multiphase specific processes are then discussed within the broader scope of atmospheric science.

4.
J Phys Chem A ; 120(51): 10123-10133, 2016 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-27992197

RESUMO

In this work, we investigate the impact of pressure and oxygen on the kinetics of and products from the gas-phase photolysis of pyruvic acid. The results reveal a decrease in the photolysis quantum yield as pressure of air or nitrogen is increased, a trend not yet documented in the literature. A Stern-Volmer analysis demonstrates this effect is due to deactivation of the singlet state of pyruvic acid when the photolysis is performed in nitrogen, and from quenching of both the singlet and triplet state in air. Consistent with previous studies, acetaldehyde and CO2 are observed as the major products; however, other products, most notably acetic acid, are also identified in this work. The yield of acetic acid increases with increasing pressure of buffer gas, an effect that is amplified by the presence of oxygen. At least two mechanisms are necessary to explain the acetic acid, including one that requires reaction of photolysis intermediates with O2. These findings extend the fundamental understanding of the gas-phase photochemistry of pyruvic acid, highlighting the importance of pressure on the photolysis quantum yields and products.

5.
J Phys Chem A ; 118(37): 8505-16, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24725260

RESUMO

Pyruvic acid in the atmosphere is found in both the gas and aqueous phases, and its behavior gives insight into that of other α-keto acids. Photolysis is a significant degradation pathway for this molecule in the environment, and in aqueous solution the major photoproducts are higher-molecular-weight compounds that may contribute to secondary organic aerosol mass. The kinetics of the aqueous-phase photolysis of pyruvic acid under aerobic and anaerobic conditions was investigated in order to calculate the first-order rate constant, Jaq, in solution. Analysis of the exponential decay of pyruvic acid was performed by monitoring both pyruvic acid and its photolytic products over the course of the reaction by (1)H NMR spectroscopy. Detection of major and minor products in the 0.1, 0.05, and 0.02 M pyruvic acid photolyses clearly demonstrates that the primary reaction pathways are highly dependent on the initial pyruvic acid concentration and the presence of dissolved oxygen. The Jaq values were calculated with approximations based on the dominant pathways for limiting cases of the mechanism. Finally, a model study using the calculated rate constants demonstrates the importance of aqueous-phase photolysis as a sink for pyruvic acid in the atmosphere, compared with gas-phase photolysis and OH oxidation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA