Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34039707

RESUMO

Specified intestinal epithelial cells reprogram and contribute to the regeneration and renewal of the epithelium upon injury. Mutations that deregulate such renewal processes may contribute to tumorigenesis. Using intestinal organoids, we show that concomitant activation of Notch signaling and ablation of p53 induce a highly proliferative and regenerative cell state, which is associated with increased levels of Yap and the histone methyltransferase Mll1. The induced signaling system orchestrates high proliferation, self-renewal, and niche-factor-independent growth, and elevates the trimethylation of histone 3 at lysine 4 (H3K4me3). We demonstrate that Yap and Mll1 are also elevated in patient-derived colorectal cancer (CRC) organoids and control growth and viability. Our data suggest that Notch activation and p53 ablation induce a signaling circuitry involving Yap and the epigenetic regulator Mll1, which locks cells in a proliferative and regenerative state that renders them susceptible for tumorigenesis.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Histona-Lisina N-Metiltransferase/fisiologia , Proteína de Leucina Linfoide-Mieloide/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais , Fatores de Transcrição/fisiologia , Proteína Supressora de Tumor p53/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Mutação , Organoides/metabolismo , Fatores de Transcrição/metabolismo
2.
Mol Cancer ; 22(1): 89, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37248468

RESUMO

AIM: Chemoresistance is a major cause of treatment failure in colorectal cancer (CRC) therapy. In this study, the impact of the IGF2BP family of RNA-binding proteins on CRC chemoresistance was investigated using in silico, in vitro, and in vivo approaches. METHODS: Gene expression data from a well-characterized cohort and publicly available cross-linking immunoprecipitation sequencing (CLIP-Seq) data were collected. Resistance to chemotherapeutics was assessed in patient-derived xenografts (PDXs) and patient-derived organoids (PDOs). Functional studies were performed in 2D and 3D cell culture models, including proliferation, spheroid growth, and mitochondrial respiration analyses. RESULTS: We identified IGF2BP2 as the most abundant IGF2BP in primary and metastastatic CRC, correlating with tumor stage in patient samples and tumor growth in PDXs. IGF2BP2 expression in primary tumor tissue was significantly associated with resistance to selumetinib, gefitinib, and regorafenib in PDOs and to 5-fluorouracil and oxaliplatin in PDX in vivo. IGF2BP2 knockout (KO) HCT116 cells were more susceptible to regorafenib in 2D and to oxaliplatin, selumitinib, and nintedanib in 3D cell culture. Further, a bioinformatic analysis using CLIP data suggested stabilization of target transcripts in primary and metastatic tumors. Measurement of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) revealed a decreased basal OCR and an increase in glycolytic ATP production rate in IGF2BP2 KO. In addition, real-time reverse transcriptase polymerase chain reaction (qPCR) analysis confirmed decreased expression of genes of the respiratory chain complex I, complex IV, and the outer mitochondrial membrane in IGF2BP2 KO cells. CONCLUSIONS: IGF2BP2 correlates with CRC tumor growth in vivo and promotes chemoresistance by altering mitochondrial respiratory chain metabolism. As a druggable target, IGF2BP2 could be used in future CRC therapy to overcome CRC chemoresistance.


Assuntos
Neoplasias Colorretais , Humanos , Oxaliplatina/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
3.
BMC Cancer ; 23(1): 577, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349697

RESUMO

BACKGROUND: Despite their heterogeneity, the current standard preoperative radiotherapy regimen for localized high-grade soft tissue sarcoma (STS) follows a one fits all approach for all STS subtypes. Sarcoma patient-derived three-dimensional cell culture models represent an innovative tool to overcome challenges in clinical research enabling reproducible subtype-specific research on STS. In this pilot study, we present our methodology and preliminary results using STS patient-derived 3D cell cultures that were exposed to different doses of photon and proton radiation. Our aim was: (i) to establish a reproducible method for irradiation of STS patient-derived 3D cell cultures and (ii) to explore the differences in tumor cell viability of two different STS subtypes exposed to increasing doses of photon and proton radiation at different time points. METHODS: Two patient-derived cell cultures of untreated localized high-grade STS (an undifferentiated pleomorphic sarcoma (UPS) and a pleomorphic liposarcoma (PLS)) were exposed to a single fraction of photon or proton irradiation using doses of 0 Gy (sham irradiation), 2 Gy, 4 Gy, 8 Gy and 16 Gy. Cell viability was measured and compared to sham irradiation at two different time points (four and eight days after irradiation). RESULTS: The proportion of viable tumor cells four days after photon irradiation for UPS vs. PLS were significantly different with 85% vs. 65% (4 Gy), 80% vs. 50% (8 Gy) and 70% vs. 35% (16 Gy). Proton irradiation led to similar diverging viability curves between UPS vs. PLS four days after irradiation with 90% vs. 75% (4 Gy), 85% vs. 45% (8 Gy) and 80% vs. 35% (16 Gy). Photon and proton radiation displayed only minor differences in cell-killing properties within each cell culture (UPS and PLS). The cell-killing effect of radiation sustained at eight days after irradiation in both cell cultures. CONCLUSIONS: Pronounced differences in radiosensitivity are evident among UPS and PLS 3D patient-derived sarcoma cell cultures which may reflect the clinical heterogeneity. Photon and proton radiation showed similar dose-dependent cell-killing effectiveness in both 3D cell cultures. Patient-derived 3D STS cell cultures may represent a valuable tool to enable translational studies towards individualized subtype-specific radiotherapy in patients with STS.


Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Humanos , Prótons , Projetos Piloto , Sarcoma/radioterapia , Sarcoma/cirurgia , Fótons/uso terapêutico
4.
PLoS Genet ; 15(3): e1008076, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30925167

RESUMO

Organoid cultures derived from colorectal cancer (CRC) samples are increasingly used as preclinical models for studying tumor biology and the effects of targeted therapies under conditions capturing in vitro the genetic make-up of heterogeneous and even individual neoplasms. While 3D cultures are initiated from surgical specimens comprising multiple cell populations, the impact of tumor heterogeneity on drug effects in organoid cultures has not been addressed systematically. Here we have used a cohort of well-characterized CRC organoids to study the influence of tumor heterogeneity on the activity of the KRAS/MAPK-signaling pathway and the consequences of treatment by inhibitors targeting EGFR and downstream effectors. MAPK signaling, analyzed by targeted proteomics, shows unexpected heterogeneity irrespective of RAS mutations and is associated with variable responses to EGFR inhibition. In addition, we obtained evidence for intratumoral heterogeneity in drug response among parallel "sibling" 3D cultures established from a single KRAS-mutant CRC. Our results imply that separate testing of drug effects in multiple subpopulations may help to elucidate molecular correlates of tumor heterogeneity and to improve therapy response prediction in patients.


Assuntos
Técnicas de Cultura de Células/métodos , Neoplasias Colorretais/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Linhagem Celular Tumoral , Estudos de Coortes , Neoplasias Colorretais/fisiopatologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Genes erbB-1 , Humanos , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Mutação , Organoides/metabolismo , Organoides/fisiologia , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/fisiologia , Transdução de Sinais , Proteínas ras/genética
5.
Int J Cancer ; 146(4): 1031-1041, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31304977

RESUMO

Accurate modeling of intratumor heterogeneity presents a bottleneck against drug testing. Flexibility in a preclinical platform is also desirable to support assessment of different endpoints. We established the model system, OHC-NB1, from a bone marrow metastasis from a patient diagnosed with MYCN-amplified neuroblastoma and performed whole-exome sequencing on the source metastasis and the different models and passages during model development (monolayer cell line, 3D spheroid culture and subcutaneous xenograft tumors propagated in mice). OHC-NB1 harbors a MYCN amplification in double minutes, 1p deletion, 17q gain and diploid karyotype, which persisted in all models. A total of 80-540 single-nucleotide variants (SNVs) was detected in each sample, and comparisons between the source metastasis and models identified 34 of 80 somatic SNVs to be propagated in the models. Clonal reconstruction using the combined copy number and SNV data revealed marked clonal heterogeneity in the originating metastasis, with four clones being reflected in the model systems. The set of OHC-NB1 models represents 43% of somatic SNVs and 23% of the cellularity in the originating metastasis with varying clonal compositions, indicating that heterogeneity is partially preserved in our model system.


Assuntos
Modelos Animais de Doenças , Neuroblastoma/genética , Neuroblastoma/patologia , Neoplasias Abdominais/genética , Neoplasias Abdominais/patologia , Animais , Feminino , Heterogeneidade Genética , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos SCID , Neoplasias Torácicas/genética , Neoplasias Torácicas/patologia , Células Tumorais Cultivadas
7.
Brief Bioinform ; 15(1): 65-78, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23047157

RESUMO

Good accessibility of publicly funded research data is essential to secure an open scientific system and eventually becomes mandatory [Wellcome Trust will Penalise Scientists Who Don't Embrace Open Access. The Guardian 2012]. By the use of high-throughput methods in many research areas from physics to systems biology, large data collections are increasingly important as raw material for research. Here, we present strategies worked out by international and national institutions targeting open access to publicly funded research data via incentives or obligations to share data. Funding organizations such as the British Wellcome Trust therefore have developed data sharing policies and request commitment to data management and sharing in grant applications. Increased citation rates are a profound argument for sharing publication data. Pre-publication sharing might be rewarded by a data citation credit system via digital object identifiers (DOIs) which have initially been in use for data objects. Besides policies and incentives, good practice in data management is indispensable. However, appropriate systems for data management of large-scale projects for example in systems biology are hard to find. Here, we give an overview of a selection of open-source data management systems proved to be employed successfully in large-scale projects.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Biologia de Sistemas/estatística & dados numéricos , Acesso à Informação , Biologia Computacional , Coleta de Dados , Disseminação de Informação , Internacionalidade , Software
8.
Breast Cancer Res Treat ; 151(3): 709-15, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25981900

RESUMO

Mastopathy is a common disease of the breast likely associated with elevated estrogen levels and a putative risk factor for breast cancer. The role of estrogen receptor alpha (ESR1) in mastopathy has not been investigated previously. Here, we investigated the prevalence of ESR1 gene amplification in mastopathy and its prediction for breast cancer. Paraffin-embedded tissues from 58 women with invasive breast cancer were analyzed. For all women, tissues with mastopathy taken at least 1.5 years before first diagnosis of breast cancer were available. Tissue from 46 women with mastopathy without a diagnosis of breast carcinoma in the observed time frame (12-18 years) was used as control. Fluorescence in situ hybridization analysis revealed that ESR1 was amplified in nine of 58 (15.5 %) breast cancers. All ESR1-amplified breast cancers were strongly positive for estrogen receptor with ER immunohistochemistry. Interestingly, in women with ESR1 amplification in breast cancer, the amplification was detectable in mastopathic tissues prior to the first diagnosis of breast cancer but was absent in tissues from women with mastopathy who did not develop breast cancer. Our study suggests that ESR1 gene amplification is an early event in breast pathology and might be a helpful predictive marker to identify patients at high risk of developing breast cancer.


Assuntos
Doenças Mamárias/complicações , Doenças Mamárias/genética , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/etiologia , Receptor alfa de Estrogênio/genética , Expressão Gênica , Predisposição Genética para Doença , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Doenças Mamárias/patologia , Doenças Mamárias/cirurgia , Neoplasias da Mama/diagnóstico , Estudos de Coortes , Receptor alfa de Estrogênio/metabolismo , Feminino , Seguimentos , Amplificação de Genes , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Pessoa de Meia-Idade , Curva ROC
9.
Cancers (Basel) ; 16(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38339354

RESUMO

Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. The high mortality is directly associated with metastatic disease, which is thought to be initiated by colon cancer stem cells, according to the cancer stem cell (CSC) model. Consequently, early identification of those patients who are at high risk for metastasis is crucial for improved treatment and patient outcomes. Metastasis-associated in colon cancer 1 (MACC1) is a novel prognostic biomarker for tumor progression and metastasis formation independent of tumor stage. We previously showed an involvement of MACC1 in cancer stemness in the mouse intestine of our MACC1 transgenic mouse models. However, the expression of MACC1 in human CSCs and possible implications remain elusive. Here, we explored the molecular mechanisms by which MACC1 regulates stemness and the CSC-associated invasive phenotype based on patient-derived tumor organoids (PDOs), patient-derived xenografts (PDXs) and human CRC cell lines. We showed that CD44-enriched CSCs from PDO models express significantly higher levels of MACC1 and LGR5 and display higher tumorigenicity in immunocompromised mice. Similarly, RNA sequencing performed on PDO and PDX models demonstrated significantly increased MACC1 expression in ALDH1(+) CSCs, highlighting its involvement in cancer stemness. We further showed the correlation of MACC1 with the CSC markers CD44, NANOG and LGR5 in PDO models as well as established cell lines. Additionally, MACC1 increased stem cell gene expression, clonogenicity and sphere formation. Strikingly, we showed that MACC1 binds as a transcription factor to the LGR5 gene promoter, uncovering the long-known CSC marker LGR5 as a novel essential signaling mediator employed by MACC1 to induce CSC-like properties in human CRC patients. Our in vitro findings were further substantiated by a significant positive correlation of MACC1 with LGR5 in CRC cell lines as well as CRC patient tumors. Taken together, this study indicates that the metastasis inducer MACC1 acts as a cancer stem cell-associated marker. Interventional approaches targeting MACC1 would potentially improve further targeted therapies for colorectal cancer patients to eradicate CSCs and prevent cancer recurrence and distant metastasis formation.

10.
Case Rep Oncol ; 17(1): 490-496, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545086

RESUMO

Introduction: Controlled randomized trials, molecular analytics, and guideline recommendations have so far been irreplaceable tools to ensure appropriate treatment and decision-making for physicians and patients. Individual patient models are increasingly complementing these methods, particularly in the case of advanced cancers, rare cancers, and cancers of unknown primary (CUP), as in these cases comprehensive clinical evidence is unavailable, often resulting in poor treatment success, even after stratification. Case Presentation: Here we report a 53-year-old patient with CUP with axillary lymph node metastases for whom patient-derived 3D (PD3D®) tumor organoids successfully guided personalized treatment. PD3D tumor models were used to screen drugs that are effective at the suspected primary tumor site. The screen revealed sensitivity to doxorubicin, which is not indicated for CUP treatment but hinted toward breast cancer that was subsequently confirmed as triple-negative breast cancer (TNBC). The patient showed partial remission to first-line doxorubicin and cyclophosphamide, which were followed by docetaxel. Subsequent radiotherapy eventually led to a complete remission, which is still ongoing. Conclusion: We conclude that pre-therapeutic drug sensitivity screening with PD3D tumor models can be essential in guiding and enabling an effective personalized treatment for patients with hard-to-treat cancers, like CUP or TNBC.

11.
iScience ; 25(7): 104498, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35720265

RESUMO

Recent evidence demonstrates that colon cancer stem cells (CSCs) can generate neurons that synapse with tumor innervating fibers required for tumorigenesis and disease progression. Greater understanding of the mechanisms that regulate CSC driven tumor neurogenesis may therefore lead to more effective treatments. RNA-sequencing analyses of ALDHPositive CSCs from colon cancer patient-derived organoids (PDOs) and xenografts (PDXs) showed CSCs to be enriched for neural development genes. Functional analyses of genes differentially expressed in CSCs from PDO and PDX models demonstrated the neural crest stem cell (NCSC) regulator EGR2 to be required for tumor growth and to control expression of homebox superfamily embryonic master transcriptional regulator HOX genes and the neural stem cell and master cell fate regulator SOX2. These data support CSCs as the source of tumor neurogenesis and suggest that targeting EGR2 may provide a therapeutic differentiation strategy to eliminate CSCs and block nervous system driven disease progression.

12.
Cancers (Basel) ; 14(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35805024

RESUMO

Background: In colorectal cancer (CRC), mutations of genes associated with the TGF-ß/BMP signaling pathway, particularly affecting SMAD4, are known to correlate with decreased overall survival and it is assumed that this signaling axis plays a key role in chemoresistance. Methods: Using CRISPR technology on syngeneic patient-derived organoids (PDOs), we investigated the role of a loss-of-function of SMAD4 in sensitivity to MEK-inhibitors. CRISPR-engineered SMAD4R361H PDOs were subjected to drug screening, RNA-Sequencing, and multiplex protein profiling (DigiWest®). Initial observations were validated on an additional set of 62 PDOs with known mutational status. Results: We show that loss-of-function of SMAD4 renders PDOs sensitive to MEK-inhibitors. Multiomics analyses indicate that disruption of the BMP branch within the TGF-ß/BMP pathway is the pivotal mechanism of increased drug sensitivity. Further investigation led to the identification of the SFAB-signature (SMAD4, FBXW7, ARID1A, or BMPR2), coherently predicting sensitivity towards MEK-inhibitors, independent of both RAS and BRAF status. Conclusion: We identified a novel mutational signature that reliably predicts sensitivity towards MEK-inhibitors, regardless of the RAS and BRAF status. This finding poses a significant step towards better-tailored cancer therapies guided by the use of molecular biomarkers.

13.
Front Cell Dev Biol ; 9: 760705, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805167

RESUMO

Pancreatic cancer is one of the deadliest cancers and remains a major unsolved health problem. While pancreatic ductal adenocarcinoma (PDAC) is associated with driver mutations in only four major genes (KRAS, TP53, SMAD4, and CDKN2A), every tumor differs in its molecular landscape, histology, and prognosis. It is crucial to understand and consider these differences to be able to tailor treatment regimens specific to the vulnerabilities of the individual tumor to enhance patient outcome. This review focuses on the heterogeneity of pancreatic tumor cells and how in addition to genetic alterations, the subsequent dysregulation of multiple signaling cascades at various levels, epigenetic and metabolic factors contribute to the oncogenesis of PDAC and compensate for each other in driving cancer progression if one is tackled by a therapeutic approach. This implicates that besides the need for new combinatorial therapies for PDAC, a personalized approach for treating this highly complex cancer is required. A strategy that combines both a target-based and phenotypic approach to identify an effective treatment, like Reverse Clinical Engineering® using patient-derived organoids, is discussed as a promising way forward in the field of personalized medicine to tackle this deadly disease.

14.
Cells ; 10(4)2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920536

RESUMO

Cancer is a multifactorial disease with increasing incidence. There are more than 100 different cancer types, defined by location, cell of origin, and genomic alterations that influence oncogenesis and therapeutic response. This heterogeneity between tumors of different patients and also the heterogeneity within the same patient's tumor pose an enormous challenge to cancer treatment. In this review, we explore tumor heterogeneity on the longitudinal and the latitudinal axis, reviewing current and future approaches to study this heterogeneity and their potential to support oncologists in tailoring a patient's treatment regimen. We highlight how the ideal of precision oncology is reaching far beyond the knowledge of genetic variants to inform clinical practice and discuss the technologies and strategies already available to improve our understanding and management of heterogeneity in cancer treatment. We will focus on integrating multi-omics technologies with suitable in vitro models and their proficiency in mimicking endogenous tumor heterogeneity.


Assuntos
Genômica , Oncologia , Medicina de Precisão , Heterogeneidade Genética , Humanos , Modelos Biológicos , Neoplasias/genética , Neoplasias/terapia
15.
iScience ; 24(6): 102618, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34142064

RESUMO

Recent data suggest that therapy-resistant quiescent cancer stem cells (qCSCs) are the source of relapse in colon cancer. Here, using colon cancer patient-derived organoids and xenografts, we identify rare long-term label-retaining qCSCs that can re-enter the cell cycle to generate new tumors. RNA sequencing analyses demonstrated that these cells display the molecular hallmarks of quiescent tissue stem cells, including expression of p53 signaling genes, and are enriched for transcripts common to damage-induced quiescent revival stem cells of the regenerating intestine. In addition, we identify negative regulators of cell cycle, downstream of p53, that we show are indicators of poor prognosis and may be targeted for qCSC abolition in both p53 wild-type and mutant tumors. These data support the temporal inhibition of downstream targets of p53 signaling, in combination with standard-of-care treatments, for the elimination of qCSCs and prevention of relapse in colon cancer.

16.
Cell Commun Signal ; 8(1): 6, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20459772

RESUMO

During the past years in vivo transplantation experiments and in vitro colony-forming assays indicated that tumors arise only from rare cells. These cells were shown to bear self-renewal capacities and the ability to recapitulate all cell types within an individual tumor. Due to their phenotypic resemblance to normal stem cells, the term "cancer stem cells" is used. However, some pieces of the puzzle are missing: (a) a stringent definition of cancer stem cells in solid tumors (b) specific markers that only target cells that meet the criteria for a cancer stem cell in a certain type of tumor. These missing parts started an ongoing debate about which is the best method to identify and characterize cancer stem cells, or even if their mere existence is just an artifact caused by the experimental procedures. Recent findings query the cancer stem cell hypothesis for solid tumors itself since it was shown in xenograft transplantation experiments that under appropriate conditions tumor-initiating cells are not rare.In this review we critically discuss the challenges and prospects of the currently used major methods to identify cancer stem cells. Further on, we reflect the present discussion about the existence of cancer stem cells in solid tumors as well as the amount and characteristics of tumor-initiating cells and finally provide new perspectives like the correlation of cancer stem cells and induced pluripotent cells.

17.
Biogerontology ; 10(6): 721-34, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19255868

RESUMO

The process of aging is complex involving numerous factors centered on transcriptional changes with advanced age. This study was aimed at elucidating mechanisms involved in mouse aging by conducting both gene expression and biochemical analyses on isolated mouse brain, heart and kidney. The gene expression analysis was not aimed at solely highlighting age-related transcriptional changes but also revealing regulated biological processes, cellular compartments, signaling and metabolic pathways. We have uncovered a conserved increase in the expression of genes mediating immune responses in all the tissues analyzed. In addition, elevated levels of lipid hydroperoxides (LPO)­an indicator of increased levels of radical oxygen species, implicate an oxidative stress-mediated activity of NF-kB signaling. In summary, these results suggest that transcriptional changes are most probably the downstream effect of environmental and endogenous factors constantly affecting the organism during its lifetime. In addition, we propose LPO as a potential biomarker of aging.


Assuntos
Envelhecimento/imunologia , Encéfalo/imunologia , Rim/imunologia , Miocárdio/imunologia , Fatores Etários , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Western Blotting , Encéfalo/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Rim/metabolismo , Peróxidos Lipídicos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , NF-kappa B/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Transcrição Gênica
18.
Neurol Neurochir Pol ; 43(2): 183-90, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19484696

RESUMO

Generally, gliomas do not metastasize. Therefore, larger series are not available to investigate the pathways of tumour spread. Here, we present the case of a young man with a glioblastoma multiforme WHO grade IV and distant metastases in several tissues. The glioblastoma multiforme WHO grade IV of a young male patient recurred within a very short time along the surgical resection pathway within the temporalis muscle. After removal of the tumour bulk, the patient developed a distant intracranial tumour lesion around the contralateral ventricular system and a pulmonary tumour. Later on, the patient underwent an operation on a facial lesion representing a local extracranial glioblastoma recurrence and containing metastases within lymph nodes and lymphatic vessels. Our case report indicated a lymphatic pathway of metastasis, which could be demonstrated by our histopathological analysis. We suggest that altered gene expression stimulated by glioblastoma-environment interaction altered the properties of glioblastoma cells, whether caused by a spontaneous genetic shift or induced by factors provided by the extracranial tissue.


Assuntos
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Glioblastoma/secundário , Adulto , Neoplasias Encefálicas/complicações , Hemorragia Cerebral/diagnóstico , Hemorragia Cerebral/etiologia , Glioblastoma/complicações , Glioblastoma/diagnóstico , Humanos , Metástase Linfática , Imageamento por Ressonância Magnética , Masculino , Neoplasias Mandibulares/patologia , Neoplasias Mandibulares/secundário , Músculo Masseter/patologia
19.
Front Pharmacol ; 9: 77, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29491834

RESUMO

Recent advances in next-generation sequencing and other omics technologies capable to map cell fate provide increasing evidence on the crucial role of intra-tumor heterogeneity (ITH) for cancer progression. The different facets of ITH, from genomic to microenvironmental heterogeneity and the hierarchical cellular architecture originating from the cancer stem cell compartment, contribute to the range of tumor phenotypes. Decoding these complex data resulting from the analysis of tumor tissue complexity poses a challenge for developing novel therapeutic strategies that can counteract tumor evolution and cellular plasticity. To achieve this aim, the development of in vitro and in vivo cancer models that resemble the complexity of ITH is crucial in understanding the interplay of cells and their (micro)environment and, consequently, in testing the efficacy of new targeted treatments and novel strategies of tailoring combinations of treatments to the individual composition of the tumor. This challenging approach may be an important cornerstone in overcoming the development of pharmaco-resistances during multiple lines of treatment. In this paper, we report the latest advances in patient-derived 3D (PD3D) cell cultures and patient-derived tumor xenografts (PDX) as in vitro and in vivo models that can retain the genetic and phenotypic heterogeneity of the tumor tissue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA