Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Physiol ; 86: 99-121, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345905

RESUMO

The elastic properties of conductance arteries are one of the most important hemodynamic functions in the body, and data continue to emerge regarding the importance of their dysfunction in vascular aging and a range of cardiovascular diseases. Here, we provide new insight into the integrative physiology of arterial stiffening and its clinical consequence. We also comprehensively review progress made on pathways/molecules that appear today as important basic determinants of arterial stiffness, particularly those mediating the vascular smooth muscle cell (VSMC) contractility, plasticity and stiffness. We focus on membrane and nuclear mechanotransduction, clearance function of the vascular wall, phenotypic switching of VSMCs, immunoinflammatory stimuli and epigenetic mechanisms. Finally, we discuss the most important advances of the latest clinical studies that revisit the classical therapeutic concepts of arterial stiffness and lead to a patient-by-patient strategy according to cardiovascular risk exposure and underlying disease.


Assuntos
Doenças Cardiovasculares , Rigidez Vascular , Humanos , Mecanotransdução Celular , Artérias/metabolismo , Doenças Cardiovasculares/metabolismo , Envelhecimento/metabolismo
2.
Blood ; 141(12): 1457-1468, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564031

RESUMO

von Willebrand factor (VWF) is a multimeric protein, the size of which is regulated via ADAMTS13-mediated proteolysis within the A2 domain. We aimed to isolate nanobodies distinguishing between proteolyzed and non-proteolyzed VWF, leading to the identification of a nanobody (designated KB-VWF-D3.1) targeting the A3 domain, the epitope of which overlaps the collagen-binding site. Although KB-VWF-D3.1 binds with similar efficiency to dimeric and multimeric derivatives of VWF, binding to VWF was lost upon proteolysis by ADAMTS13, suggesting that proteolysis in the A2 domain modulates exposure of its epitope in the A3 domain. We therefore used KB-VWF-D3.1 to monitor VWF degradation in plasma samples. Spiking experiments showed that a loss of 10% intact VWF could be detected using this nanobody. By comparing plasma from volunteers to that from congenital von Willebrand disease (VWD) patients, intact-VWF levels were significantly reduced for all VWD types, and most severely in VWD type 2A-group 2, in which mutations promote ADAMTS13-mediated proteolysis. Unexpectedly, we also observed increased proteolysis in some patients with VWD type 1 and VWD type 2M. A significant correlation (r = 0.51, P < .0001) between the relative amount of high-molecular weight multimers and levels of intact VWF was observed. Reduced levels of intact VWF were further found in plasmas from patients with severe aortic stenosis and patients receiving mechanical circulatory support. KB-VWF-D3.1 is thus a nanobody that detects changes in the exposure of its epitope within the collagen-binding site of the A3 domain. In view of its unique characteristics, it has the potential to be used as a diagnostic tool to investigate whether a loss of larger multimers is due to ADAMTS13-mediated proteolysis.


Assuntos
Doença de von Willebrand Tipo 2 , Doenças de von Willebrand , Humanos , Fator de von Willebrand/metabolismo , Doenças de von Willebrand/genética , Proteólise , Doença de von Willebrand Tipo 2/diagnóstico , Colágeno , Epitopos/metabolismo , Proteína ADAMTS13/metabolismo
3.
Physiol Rev ; 97(4): 1555-1617, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28954852

RESUMO

The cushioning function of large arteries encompasses distension during systole and recoil during diastole which transforms pulsatile flow into a steady flow in the microcirculation. Arterial stiffness, the inverse of distensibility, has been implicated in various etiologies of chronic common and monogenic cardiovascular diseases and is a major cause of morbidity and mortality globally. The first components that contribute to arterial stiffening are extracellular matrix (ECM) proteins that support the mechanical load, while the second important components are vascular smooth muscle cells (VSMCs), which not only regulate actomyosin interactions for contraction but mediate also mechanotransduction in cell-ECM homeostasis. Eventually, VSMC plasticity and signaling in both conductance and resistance arteries are highly relevant to the physiology of normal and early vascular aging. This review summarizes current concepts of central pressure and tensile pulsatile circumferential stress as key mechanical determinants of arterial wall remodeling, cell-ECM interactions depending mainly on the architecture of cytoskeletal proteins and focal adhesion, the large/small arteries cross-talk that gives rise to target organ damage, and inflammatory pathways leading to calcification or atherosclerosis. We further speculate on the contribution of cellular stiffness along the arterial tree to vascular wall stiffness. In addition, this review provides the latest advances in the identification of gene variants affecting arterial stiffening. Now that important hemodynamic and molecular mechanisms of arterial stiffness have been elucidated, and the complex interplay between ECM, cells, and sensors identified, further research should study their potential to halt or to reverse the development of arterial stiffness.


Assuntos
Envelhecimento/metabolismo , Matriz Extracelular/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Doenças Vasculares/metabolismo , Rigidez Vascular , Fatores Etários , Envelhecimento/genética , Envelhecimento/patologia , Animais , Pressão Arterial , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Humanos , Mecanotransdução Celular , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Fluxo Pulsátil , Doenças Vasculares/genética , Doenças Vasculares/patologia , Doenças Vasculares/fisiopatologia
4.
Curr Rheumatol Rep ; 26(5): 178-187, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38372872

RESUMO

PURPOSE OF THE REVIEW: Thrombotic risk assessment in antiphospholipid positive (aPL +) subjects is a major challenge, and the study of in vitro thrombin generation (thrombin generation assays (TGA)) could provide useful information. Activated protein C (APC) sensitivity is involved in thrombotic events in antiphospholipid syndrome patients. We summarized methods used to assess APC sensitivity with TGA and evaluated the prognostic role of APC resistance through literature search. RECENT FINDINGS: APC resistance induced by aPL is a complex pathway. Several cross-sectional studies assessed APC sensitivity to understand thrombotic event mechanisms in aPL + subjects. Only one prospective cohort had investigated the prognostic impact of APC resistance in aPL + subjects, with a positive and significant correlation between APC sensitivity and the risk of thrombosis during the follow up (hazard ratio, 6.07 [95% CI, 1.69-21.87]). APC resistance assessed with TGA could be associated with thrombotic events in aPL + subjects.


Assuntos
Anticorpos Antifosfolipídeos , Síndrome Antifosfolipídica , Trombina , Trombose , Humanos , Trombose/etiologia , Síndrome Antifosfolipídica/imunologia , Síndrome Antifosfolipídica/complicações , Síndrome Antifosfolipídica/diagnóstico , Síndrome Antifosfolipídica/sangue , Medição de Risco/métodos , Trombina/metabolismo , Anticorpos Antifosfolipídeos/sangue , Anticorpos Antifosfolipídeos/imunologia , Resistência à Proteína C Ativada , Testes de Coagulação Sanguínea/métodos , Medicina de Precisão/métodos
5.
Arterioscler Thromb Vasc Biol ; 42(9): e253-e272, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35924557

RESUMO

Evolutionary organization of the arterial wall into layers occurred concomitantly with the emergence of a highly muscularized, pressurized arterial system that facilitates outward hydraulic conductance and mass transport of soluble substances across the arterial wall. Although colliding circulating cells disperse potential energy within the arterial wall, the different layers counteract this effect: (1) the endothelium ensures a partial barrier function; (2) the media comprises smooth muscle cells capable of endocytosis/phagocytosis; (3) the outer adventitia and perivascular adipocytic tissue are the final receptacles of convected substances. While the endothelium forms a physical and a biochemical barrier, the medial layer is avascular, relying on the specific permeability properties of the endothelium for metabolic support. Different components of the media interact with convected molecules: medial smooth muscle cells take up numerous molecules via scavenger receptors and are capable of phagocytosis of macro/micro particles. The outer layers-the highly microvascularized innervated adventitia and perivascular adipose tissue-are also involved in the clearance functions of the media: the adventitia is the seat of immune response development, inward angiogenesis, macromolecular lymphatic drainage, and neuronal stimulation. Consequently, the clearance functions of the arterial wall are physiologically essential, but also may favor the development of arterial wall pathologies. This review describes how the walls of large conductance arteries have acquired physiological clearance functions, how this is determined by the attributes of the endothelial barrier, governed by endocytic and phagocytic capacities of smooth muscle cells, impacting adventitial functions, and the role of these clearance functions in arterial wall diseases.


Assuntos
Artérias , Doenças Vasculares , Tecido Adiposo , Túnica Adventícia/patologia , Artérias/patologia , Humanos , Miócitos de Músculo Liso/patologia , Doenças Vasculares/patologia
6.
Rheumatology (Oxford) ; 61(7): 2993-2998, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34791113

RESUMO

OBJECTIVES: In APS, precise evaluation of thrombotic risk is a major challenge. Different players, such as activated protein C (APC) resistance or neutrophil extracellular traps (NETs) contribute to the risk of thrombosis. Nevertheless, no study has investigated the interaction between these actors. The main objective of this study was to investigate the relation between NETs and APC resistance. METHODS: We designed a cross-sectional study including APS/antiphospholipid antibodies (aPL) patients and patients with autoimmune diseases (AID). We performed thrombin generation tests without and with APC to determine APC resistance. To evaluate circulating NETs, we measured plasma levels of MPO-DNA complexes and cell-free DNA with ELISA. RESULTS: We recruited 117 patients with definite APS/aPL or AID. We found a positive correlation between NETs and APC resistance, in APS patients and specifically in patients with high thrombotic risk, displaying LA or positivity of all three aPL tests (triple+), or anti-domain I IgG (aDI+). All these patient subgroups had increased NETs concentrations and APC resistance. As the risk profile for thrombosis increased, the relationship between NETs and APC resistance was stronger. CONCLUSION: We have shown that NETs participate in the hypercoagulable state of APS patients by contributing to APC resistance, in particular in high-risk patients. In these most at-risk patients, a targeted action on NETs could reduce APC resistance and constitute a new therapeutic approach in the treatment of APS patients in addition to antithrombotic therapy.


Assuntos
Resistência à Proteína C Ativada , Síndrome Antifosfolipídica , Armadilhas Extracelulares , Trombose , Estudos Transversais , Armadilhas Extracelulares/metabolismo , Humanos , Trombose/etiologia
7.
Kidney Int ; 99(5): 1162-1172, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33359501

RESUMO

Endothelial dysfunction, one of many causes of arterial changes in end-stage kidney disease (kidney failure), is a likely link between early vascular aging and the risk of thrombosis or bleeding in this condition. To evaluate this, we compared links between arterial stiffness and endothelial/coagulation factors in 55 patients receiving hemodialysis therapy and 57 age-/sex-matched control individuals. Arterial stiffness was assessed from carotid-femoral pulse wave velocity, and coagulation status from the endogenous thrombin generating potential. Markers of endothelial dysfunction (von Willebrand factor, tissue factor pathway inhibitor), neutrophil extracellular traps and tissue factor-positive extracellular vesicles were higher in patients with kidney failure. Prothrombin fragments 1 and 2, and D-dimer markers of in vivo coagulation activation were also higher. However, in vitro in the presence of platelets, endogenous thrombin generating potential was lower and its downregulation by activated protein C impaired. Antiplatelet drugs did not affect these parameters. In multiple regression analysis, prothrombin fragments 1 and 2, D-dimer, factor VIII and monocyte-derived tissue factor-positive extracellular vesicles correlated with higher carotid-femoral pulse wave velocity. In patients with kidney failure, in vivo hypercoagulability occurred with reduced thrombin generation in platelet-rich plasma, likely explaining the opposing thrombotic and bleeding tendencies in patients with kidney failure. Importantly, arteriosclerosis is more closely related to a prothrombotic state. Thus, coagulation changes plus arterial stiffness highlight a major therapeutic challenge for anticoagulant and antiplatelet drug use.


Assuntos
Arteriosclerose , Insuficiência Renal , Coagulação Sanguínea , Estudos de Casos e Controles , Humanos , Análise de Onda de Pulso , Insuficiência Renal/etiologia , Trombina
8.
Clin Gastroenterol Hepatol ; 19(6): 1088-1097.e6, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-31972287

RESUMO

Patients with inflammatory bowel diseases (IBD) have an increased risk of thrombosis, possibly due to changes in blood cells and molecules involved in hemostasis. They have increased platelet counts and reactivity as well as increased platelet-derived large extracellular vesicles. Coagulation is continuously activated in patients with IBD, based on measured markers of thrombin generation, and the anticoagulant functions of endothelial cells are damaged. Furthermore, fibrinogen is increased and fibrin clots are denser. However, pathogenesis of thrombosis in patients with IBD appears to differ from that of patients without IBD. Patients with IBD also take drugs that might contribute to risk of thrombosis, complicating the picture. We review the features of homeostasis that are altered in patients with IBD and possible mechanisms of this relationship.


Assuntos
Células Endoteliais , Doenças Inflamatórias Intestinais , Coagulação Sanguínea , Fibrinólise , Hemostasia , Humanos , Doenças Inflamatórias Intestinais/complicações
9.
Allergy ; 76(6): 1846-1858, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33484168

RESUMO

BACKGROUND: Many arguments suggest that neutrophils could play a prominent role in COVID-19. However, the role of key components of neutrophil innate immunity in severe forms of COVID-19 has deserved insufficient attention. We aimed to evaluate the involvement of neutrophil elastase, histone-DNA, and DNases in systemic and multi-organ manifestations of COVID-19. METHODS: We performed a multicenter study of markers of neutrophil innate immunity in 155 cases consecutively recruited in a screening center, local hospitals, and two regional university hospitals. The cases were evaluated according to clinical and biological markers of severity and multi-organ manifestations and compared to 35 healthy controls. RESULTS: Blood neutrophil elastase, histone-DNA, myeloperoxidase-DNA, and free dsDNA were dramatically increased, and DNase activity was decreased by 10-fold, compared with controls. Neutrophil elastase and histone-DNA were associated with intensive care admission, body temperature, lung damage, and markers of cardiovascular outcomes, renal failure, and increased interleukin-6 (IL-6), IL-8, and CXCR2. Neutrophil elastase was an independent predictor of the computed tomography score of COVID-19 lung damage and the number of affected organs, in multivariate analyses. The increased blood concentrations of NE and neutrophil extracellular traps were related to exacerbation of neutrophil stimulation through IL-8 and CXCR2 increased concentrations and increased serum DAMPs, and to impaired degradation of NETs as a consequence of the dramatic decrease in blood DNase activity. CONCLUSION: Our results point out the key role of neutrophil innate immunity exacerbation in COVID-19. Neutrophil elastase and DNase could be potential biomarkers and therapeutic targets of severe systemic manifestations of COVID-19.


Assuntos
COVID-19 , Armadilhas Extracelulares , Histonas , Humanos , Imunidade Inata , Neutrófilos , SARS-CoV-2
10.
Arterioscler Thromb Vasc Biol ; 40(5): 1055-1062, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32075419

RESUMO

Arterial stiffness is a major independent risk factor for cardiovascular complications causing isolated systolic hypertension and increased pulse pressure in the microvasculature of target organs. Stiffening of the arterial wall is determined by common mechanisms including reduced elastin/collagen ratio, production of elastin cross-linking, reactive oxygen species-induced inflammation, calcification, vascular smooth muscle cell stiffness, and endothelial dysfunction. This brief review will discuss current biological mechanisms by which other cardiovascular risk factors (eg, aging, hypertension, diabetes mellitus, and chronic kidney disease) cause arterial stiffness, with a particular focus on recent advances regarding nuclear mechanotransduction, mitochondrial oxidative stress, metabolism and dyslipidemia, genome mutations, and epigenetics. Targeting these different molecular pathways at different time of cardiovascular risk factor exposure may be a novel approach for discovering drugs to reduce arterial stiffening without affecting artery strength and normal remodeling.


Assuntos
Artérias/fisiopatologia , Epigênese Genética , Mecanotransdução Celular , Rigidez Vascular , Animais , Artérias/metabolismo , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Comorbidade , Metabolismo Energético , Humanos , Estresse Oxidativo , Medição de Risco , Fatores de Risco
11.
Curr Rheumatol Rep ; 23(8): 65, 2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-34218350

RESUMO

PURPOSE OF REVIEW: COVID-19 patients have a procoagulant state with a high prevalence of thrombotic events. The hypothesis of an involvement of antiphospholipid antibodies (aPL) has been suggested by several reports. Here, we reviewed 48 studies investigating aPL in COVID-19 patients. RECENT FINDINGS: Prevalence of Lupus Anticoagulant (LA) ranged from 35% to 92% in ICU patients. Anti-cardiolipin (aCL) IgG and IgM were found in up to 52% and up to 40% of patients respectively. Anti-ß2-glycoprotein I (aß2-GPI) IgG and IgM were found in up to 39% and up to 34% of patients respectively. Between 1% and 12% of patients had a triple positive aPL profile. There was a high prevalence of aß2-GPI and aCL IgA isotype. Two cohort studies found few persistent LA but more persistent solid phase assay aPL over time. aPL determination and their potential role is a real challenge for the treatment of this disease.


Assuntos
Anticorpos Antifosfolipídeos/imunologia , COVID-19/imunologia , Trombose/imunologia , Anticorpos Anticardiolipina/imunologia , Proteína C-Reativa/imunologia , COVID-19/sangue , COVID-19/complicações , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , Fibrinogênio/metabolismo , Humanos , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Inibidor de Coagulação do Lúpus/imunologia , SARS-CoV-2 , Índice de Gravidade de Doença , Trombose/sangue , Trombose/etiologia , beta 2-Glicoproteína I/imunologia
12.
Blood ; 129(17): 2443-2454, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28213380

RESUMO

Recently, we have identified scavenger receptor class A member I (SR-AI) as a receptor for coagulation factor X (FX), mediating the formation of an FX reservoir at the macrophage surface. Here, we demonstrate that the FX/SR-AI-complex comprises a third protein, pentraxin-2 (PTX2). The presence of PTX2 is essential to prevent internalization of FX by SR-AI, and the presence of FX is needed to interfere with internalization of PTX2. Binding studies showed that FX, SR-AI, and PTX2 independently bind to each other (KD,app: 0.2-0.7 µM). Surprisingly, immunoprecipitation experiments revealed that FX and PTX2 circulate as a complex in plasma, and complex formation involves the FX activation peptide. No binding of PTX2 to other vitamin K-dependent proteins was observed. Short hairpin RNA-mediated inhibition of PTX2 levels in mice resulted not only in reduced levels of PTX2, but also in similarly reduced FX levels. Moreover, PTX2 and FX levels were correspondingly reduced in SR-AI-deficient mice. Analysis of 71 human plasma samples uncovered a strong correlation between FX and PTX2 plasma levels. Furthermore, plasma samples of patients with reduced FX levels (congenital/acquired FX deficiency or after anti-vitamin K treatment) were characterized by concomitantly decreased PTX2 levels. In conclusion, we identified PTX2 as a novel partner for FX, and both proteins cooperate to prevent their SR-AI-mediated uptake by macrophages. Interestingly, their respective plasma levels are interdependent. These findings seem of relevance in perspective of ongoing clinical trials, in which plasma depletion of PTX2 is used as a therapeutical approach in the management of systemic amyloidosis.


Assuntos
Proteína C-Reativa/metabolismo , Deficiência do Fator X/sangue , Fator X/metabolismo , Macrófagos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Depuradores Classe A/metabolismo , Animais , Anticoagulantes/farmacologia , Proteína C-Reativa/genética , Linhagem Celular , Endocitose , Fator X/genética , Deficiência do Fator X/genética , Deficiência do Fator X/patologia , Expressão Gênica , Células HEK293 , Humanos , Cinética , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Especificidade de Órgãos , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Depuradores Classe A/antagonistas & inibidores , Receptores Depuradores Classe A/deficiência , Receptores Depuradores Classe A/genética , Vitamina K/antagonistas & inibidores , Vitamina K/metabolismo
14.
Bioorg Med Chem ; 27(18): 4101-4109, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31371219

RESUMO

The design of conjugates displaying simultaneously high selectivity and high affinity for different subtypes of integrins is a current challenge. The arginine-glycine-aspartic acid amino acid sequence (RGD) is one of the most efficient short peptides targeting these receptors. We report herein the development of linear and cyclic fluoro-C-glycoside"RGD" conjugates, taking advantage of the robustness and hydrophilicity of C-glycosides. As attested by in vitro evaluation, the design of these C-glyco"RGD" with a flexible three-carbon triazolyl linker allows distinct profiles towards αIIbß3 and αvß3 integrins. Molecular-dynamics simulations confirm the suitability of cyclic C-glyco-c(RGDfC) to target αvß3 integrin. These C-glyco"RGD" could become promising biological tools in particular for Positron Emission Tomography imaging.


Assuntos
Integrina alfaVbeta3/metabolismo , Ligantes , Humanos , Modelos Moleculares
15.
Platelets ; 29(2): 156-161, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29022492

RESUMO

A calibrated automated thrombogram (CAT) is performed usually with human platelet-free plasma (PFP) but may be more relevant with platelet-rich plasma (PRP). In this case, platelets are not stimulated by subendothelial molecules like collagen. Our aim was to assess the consequence of strong (collagen) or weak (ADP) induction of platelet release and aggregation on thrombin generation. Platelet aggregation in PRP was triggered with 10 µg/mL collagen or 10 µM ADP using a lumi-aggregometer. Thrombin generation curves were monitored by CAT in different conditions: PRP, PRP with activated platelets (actPRP), aggregated PRP (agPRP), aggregated platelets resuspended in autologous PFP (resPRP), PFP and PFP obtained after aggregation (agPFP). We found a 3-fold shortening of the lag time and time to peak and a marked increase in velocity and thrombin peak without changes in endogenous thrombin potential (ETP) in agPRP with both agonists compared with PRP. The same holds true in agPFP but with a marked increase in ETP compared with PFP. Similar changes in the kinetics of thrombin generation were observed with actPRP-collagen and to a lesser extent in resPRP-collagen compared with PRP. By contrast, there were no modifications of the thrombin generation curves in actPRP-ADP. Alpha-2-macroglobin-thrombin complexes were unchanged in the different PRP conditions but were increased in PFP prepared from agPFP compared to control PFP. Platelet aggregation during activation by agonists other than thrombin did not increase thrombin generation but accelerated its kinetics mainly via platelet content release and platelet-derived extracellular vesicules formation. In diseases characterized by altered platelet granule content or release as well as altered platelet activation, a platelet aggregation step prior to CAT analysis may be clinically relevant to improve laboratory estimation of the bleeding/thrombotic balance.


Assuntos
Processamento Eletrônico de Dados/métodos , Agregação Plaquetária/fisiologia , Tromboelastografia/métodos , Trombina/metabolismo , Humanos
17.
Arterioscler Thromb Vasc Biol ; 35(4): 930-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25722431

RESUMO

OBJECTIVE: The hypothesis that hypertension induces a hypercoagulable state arises from the complications associated with hypertension: stroke and myocardial infarction. Here, we determine whether hypertension causes changes in the thrombin-generating capacity of the vascular wall. APPROACH AND RESULTS: We used spontaneously hypertensive rats (SHR) compared with Wistar rats. The addition of thoracic aortic rings of SHR to a Wistar or SHR plasma pool resulted in a greater increase in thrombin generation compared with equivalent rings from Wistar. This increase occurred in 12- but not 5-week-old rats and was prevented by an angiotensin II-converting enzyme inhibitor, indicating that established hypertension is required to induce increased thrombin generation within the vessel wall. Whereas no difference was observed for endothelial cells, thrombin formation was higher on aortic smooth muscle cells (SMCs) from SHR than on those from Wistar. Exposure of negatively charged phospholipids was higher on SHR than on Wistar rings, as well as on cultured SMCs. Tissue factor activity was higher in SHR SMCs. Twelve-week-old SHR exhibited accelerated FeCl3-induced thrombus formation in carotid arteries, and the resulting occlusive thrombi were disaggregated by blockade of glycoprotein Ibα-von Willebrand factor interactions. SHR SMCs were more sensitive to thrombin-induced proliferation than Wistar SMCs. This effect was totally abolished by a protease-activated receptor 1 inhibitor. CONCLUSIONS: The prothrombotic phenotype of the SHR vessel wall was due to the ability of SMCs to support greater thrombin generation and resulted in accelerated occlusive thrombus formation after arterial injury, which was sensitive to glycoprotein Ibα-von Willebrand factor inhibitors.


Assuntos
Coagulação Sanguínea , Hipertensão/complicações , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Trombose/etiologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Aorta Torácica/metabolismo , Aorta Torácica/fisiopatologia , Coagulação Sanguínea/efeitos dos fármacos , Pressão Sanguínea , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Fibrinolíticos/farmacologia , Hipertensão/sangue , Hipertensão/tratamento farmacológico , Hipertensão/genética , Hipertensão/fisiopatologia , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/efeitos dos fármacos , Fenótipo , Agregação Plaquetária , Inibidores da Agregação Plaquetária/farmacologia , Complexo Glicoproteico GPIb-IX de Plaquetas/antagonistas & inibidores , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Ratos Endogâmicos SHR , Ratos Wistar , Receptor PAR-1/antagonistas & inibidores , Receptor PAR-1/metabolismo , Trombina/metabolismo , Tromboplastina/metabolismo , Trombose/sangue , Trombose/genética , Trombose/fisiopatologia , Trombose/prevenção & controle , Fatores de Tempo , Remodelação Vascular , Fator de von Willebrand/antagonistas & inibidores , Fator de von Willebrand/metabolismo
20.
Rheumatology (Oxford) ; 54(11): 2071-5, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26163690

RESUMO

OBJECTIVE: To investigate the validity of the global APS score (GAPSS) to predict thrombosis in patients with autoimmune diseases. METHODS: This prospective cohort study included consecutive patients with aPL or SLE. aPL, aPS-PT and GAPSS were determined. A Cox proportional hazards model assessed the validity of GAPSS and identified other potential independent predictors of thrombosis. RESULTS: One hundred and thirty-seven patients [43.5 (s.d. 15.4) years old; 107 women] were followed up for a mean duration of 43.1 (s.d. 20.7) months. Mean GAPSS was significantly higher in patients who experienced a thrombotic event compared with those without [10.88 (s.d. 5.06) vs 8.15 (s.d. 5.31), respectively, P = 0.038]. In univariate analysis, age [hazard ratio (HR) = 1.04 (95% CI 1.01, 1.08)] and GAPSS above 16 [HR = 6.86 (95% CI 1.90, 24.77)] were each significantly associated with thrombosis during follow-up, while history of arterial thrombosis [HR = 2.61 (95% CI 0.87, 7.82)] failed to reach significance. Among aPL assays, IgG aPS/PT--a component of the GAPSS--was significantly associated with thrombosis [HR = 2.95 (95% CI 1.02, 8.51)]. In multivariate analysis, GAPSS above 16 remained the only significant predictor of thrombosis [HR = 6.17 (95% CI 1.70, 22.40)]. CONCLUSION: This first external validation study confirmed that GAPSS can predict thrombosis in patients with aPL and associated autoimmune diseases.


Assuntos
Síndrome Antifosfolipídica/complicações , Síndrome Antifosfolipídica/diagnóstico , Índice de Gravidade de Doença , Trombose/epidemiologia , Adulto , Doenças Autoimunes/complicações , Doenças Autoimunes/diagnóstico , Estudos de Coortes , Feminino , Seguimentos , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Modelos de Riscos Proporcionais , Estudos Prospectivos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA