Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 29(52): e202301494, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37347819

RESUMO

The isolation from organisms and readily available glycoproteins has become an increasingly convenient source of N-glycans for multiple applications including glycan microarrays, as reference standards in glycan analysis or as reagents that improve bioavailability of protein and peptide therapeutics through conjugation. A problematic step in the isolation process on a preparative scale can be the attachment of a linker for the improved purification, separation, immobilization and quantification of the glycan structures. Addressing this issue, we firstly aimed for the development of an UV active linker for a fast and reliable attachment to anomeric glycosylamines via urea bond formation. Secondly, we validated the new linker on glycan arrays in a comparative study with a collection of N-glycans which were screened against various lectins. In total, we coupled four structurally varied N-glycans to four different linkers, immobilized all constructs on a microarray and compared their binding affinities to four plant and fungal lectins of widely described specificity. Our study shows that the urea type linker showed an overall superior performance for lectin binding and once more, highlights the often neglected influence of the choice of linker on lectin recognition.


Assuntos
Glicoproteínas , Lectinas , Análise em Microsséries , Glicoproteínas/metabolismo , Lectinas/química , Ligação Proteica , Polissacarídeos/química
2.
Glycoconj J ; 40(1): 85-95, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36287345

RESUMO

The Dalbergieae lectin group encompasses several lectins with significant differences in their carbohydrate specificities and biological properties. The current work reports on the purification and characterization of a GalNAc/Gal-specific lectin from Vataireopsis araroba (Aguiar) Ducke, designated as VaL. The lectin was purified from the seeds in a single step using guar gum affinity chromatography. The lectin migrated as a single band of about 35 kDa on SDS-PAGE and, in native conditions, occurs as a homodimer. The purified lectin is stable at temperatures up to 60 °C and in a pH range from 7 to 8 and requires divalent cations for its activity. Sugar-inhibition assays demonstrate the lectin specificity towards N-acetyl-D-galactosamine, D-galactose and related sugars. Furthermore, glycan array analyses show that VaL interacts preferentially with glycans containing terminal GalNAc/Galß1-4GlcNAc. Biological activity assays were performed using three insect cell lines: CF1 midgut cells from the spruce budworm Choristoneura fumiferana, S2 embryo cells from the fruit fly Drosophila melanogaster, and GutAW midgut cells from the corn earworm Helicoverpa zea. In vitro assays indicated a biostatic effect for VaL on CF1 cells, but not on S2 and GutAW cells. The lectin presented a biostatic effect by reducing the cell growth and inducing cell agglutination, suggesting an interaction with glycans on the cell surface. VaL has been characterized as a galactoside-specific lectin of the Dalbergieae tribe, with sequence similarity to lectins from Vatairea and Arachis.


Assuntos
Fabaceae , Lectinas , Animais , Lectinas/metabolismo , Fabaceae/química , Fabaceae/metabolismo , Drosophila melanogaster , Carboidratos/análise , Sementes/química , Polissacarídeos/metabolismo , Galactosídeos/análise , Galactosídeos/metabolismo , Lectinas de Plantas/química
3.
Mol Cell Proteomics ; 19(1): 11-30, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31591262

RESUMO

Glycosylation is a topic of intense current interest in the development of biopharmaceuticals because it is related to drug safety and efficacy. This work describes results of an interlaboratory study on the glycosylation of the Primary Sample (PS) of NISTmAb, a monoclonal antibody reference material. Seventy-six laboratories from industry, university, research, government, and hospital sectors in Europe, North America, Asia, and Australia submitted a total of 103 reports on glycan distributions. The principal objective of this study was to report and compare results for the full range of analytical methods presently used in the glycosylation analysis of mAbs. Therefore, participation was unrestricted, with laboratories choosing their own measurement techniques. Protein glycosylation was determined in various ways, including at the level of intact mAb, protein fragments, glycopeptides, or released glycans, using a wide variety of methods for derivatization, separation, identification, and quantification. Consequently, the diversity of results was enormous, with the number of glycan compositions identified by each laboratory ranging from 4 to 48. In total, one hundred sixteen glycan compositions were reported, of which 57 compositions could be assigned consensus abundance values. These consensus medians provide community-derived values for NISTmAb PS. Agreement with the consensus medians did not depend on the specific method or laboratory type. The study provides a view of the current state-of-the-art for biologic glycosylation measurement and suggests a clear need for harmonization of glycosylation analysis methods.


Assuntos
Anticorpos Monoclonais/química , Produtos Biológicos , Biofarmácia/métodos , Anticorpos Monoclonais/metabolismo , Glicômica/métodos , Glicopeptídeos/metabolismo , Glicosilação , Humanos , Laboratórios , Polissacarídeos/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica/métodos
4.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36076936

RESUMO

Mesenchymal stromal cell-derived extracellular vesicles (MSC-EV) are widely considered as a cell-free therapeutic alternative to MSC cell administration, due to their immunomodulatory and regenerative properties. However, the interaction mechanisms between EV and target cells are not fully understood. The surface glycans could be key players in EV-cell communication, being specific molecular recognition patterns that are still little explored. In this study, we focused on the role of N-glycosylation of MSC-EV as mediators of MSC-EV and endothelial cells' interaction for subsequent EV uptake and the induction of cell migration and angiogenesis. For that, EV from immortalized Wharton's Jelly MSC (iWJ-MSC-EV) were isolated by size exclusion chromatography (SEC) and treated with the glycosidase PNGase-F in order to remove wild-type N-glycans. Then, CFSE-labelled iWJ-MSC-EV were tested in the context of in vitro capture, agarose-spot migration and matrigel-based tube formation assays, using HUVEC. As a result, we found that the N-glycosylation in iWJ-MSC-EV is critical for interaction with HUVEC cells. iWJ-MSC-EV were captured by HUVEC, stimulating their tube-like formation ability and promoting their recruitment. Conversely, the removal of N-glycans through PNGase-F treatment reduced all of these functional activities induced by native iWJ-MSC-EV. Finally, comparative lectin arrays of iWJ-MSC-EV and PNGase-F-treated iWJ-MSC-EV found marked differences in the surface glycosylation pattern, particularly in N-acetylglucosamine, mannose, and fucose-binding lectins. Taken together, our results highlight the importance of N-glycans in MSC-EV to permit EV-cell interactions and associated functions.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Comunicação Celular , Vesículas Extracelulares/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Células-Tronco Mesenquimais/metabolismo , Polissacarídeos/metabolismo
5.
Allergy ; 76(1): 233-246, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32568414

RESUMO

BACKGROUND: In high-income, temperate countries, IgE to allergen extracts is a risk factor for, and mediator of, allergy-related diseases (ARDs). In the tropics, positive IgE tests are also prevalent, but rarely associated with ARD. Instead, IgE responses to ubiquitous cross-reactive carbohydrate determinants (CCDs) on plant, insect and parasite glycoproteins, rather than to established major allergens, are dominant. Because anti-CCD IgE has limited clinical relevance, it may impact ARD phenotyping and assessment of contribution of atopy to ARD. METHODS: Using an allergen extract-based test, a glycan and an allergen (glyco)protein microarray, we mapped IgE fine specificity among Ugandan rural Schistosoma mansoni (Sm)-endemic communities, proximate urban communities, and importantly in asthmatic and nonasthmatic schoolchildren. RESULTS: Overall, IgE sensitization to extracts was highly prevalent (43%-73%) but allergen arrays indicated that this was not attributable to established major allergenic components of the extracts (0%-36%); instead, over 40% of all participants recognized CCD-bearing components. Using glycan arrays, we dissected IgE responses to specific glycan moieties and found that reactivity to classical CCD epitopes (core ß-1,2-xylose, α-1,3-fucose) was positively associated with sensitization to extracts, rural environment and Sm infection, but not with skin reactivity to extracts or sensitization to their major allergenic components. Interestingly, we discovered that reactivity to only a subset of core α-1,3-fucose-carrying N-glycans was inversely associated with asthma. CONCLUSIONS: CCD reactivity is not just an epiphenomenon of parasite exposure hampering specificity of allergy diagnostics; mechanistic studies should investigate whether specific CCD moieties identified here are implicated in the protective effect of certain environmental exposures against asthma.


Assuntos
Asma , Fucose , Alérgenos , Asma/diagnóstico , Asma/epidemiologia , Asma/etiologia , Carboidratos , Criança , Reações Cruzadas , Epitopos , Humanos , Imunoglobulina E
6.
Chem Soc Rev ; 49(12): 3863-3888, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32520059

RESUMO

This review provides an extensive summary of the effects of carbohydrate fluorination with regard to changes in physical, chemical and biological properties with respect to regular saccharides. The specific structural, conformational, stability, reactivity and interaction features of fluorinated sugars are described, as well as their applications as probes and in chemical biology.


Assuntos
Carboidratos/química , Sondas Moleculares/química , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Glicosídeos/química , Halogenação , Humanos , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Vacinas Sintéticas/química , Vacinas Sintéticas/imunologia
7.
Chemistry ; 26(56): 12809-12817, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-32445493

RESUMO

C-type lectin receptor (CLR) carbohydrate binding proteins found on immune cells with important functions in pathogen recognition as well as self and non-self-differentiation are increasingly moving into the focus of drug developers as targets for the immune therapy of cancer autoimmune diseases and inflammation and to improve the efficacy of vaccines. The development of molecules with increased affinity and selectivity over the natural glycan binders has largely focused on the synthesis of mono and disaccharide mimetics but glycan array binding experiments have shown increased binding selectivity and affinity for selected larger oligosaccharides that are able to engage in additional favorable interactions beyond the primary binding site. Here, a platform for the rapid preparation and screening of N-glycan mimetics on microarrays is presented that turns a panel of complex glycan core structures into structurally diverse glycomimetics by a combination of enzymatic glycosylation with a nonnatural donor and subsequent cycloaddition with a collection of alkynes. All surface-based reactions were monitored by MALDI-TOF MS to assess conversion and purity of spot compositions. Screening the collection of 374 N-glycomimetics against the plant lectin WFA and the 2 human immune lectins MGL ECD and Langerin ECD produced a number of high affinity binders as lead structures for more selective lectin targeting probes.


Assuntos
Polissacarídeos/síntese química , Glicosilação , Humanos , Lectinas Tipo C/metabolismo , Análise em Microsséries , Oligossacarídeos
8.
Chemistry ; 26(56): 12818-12830, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-32939912

RESUMO

Due to their interactions with C-type lectin receptors (CLRs), glycans from the helminth Schistosoma mansoni represent promising leads for treatment of autoimmune diseases, allergies or cancer. We chemo-enzymatically synthesized nine O-glycans based on the two predominant O-glycan cores observed in the infectious stages of schistosomiasis, the mucin core 2 and the S. mansoni core. The O-glycans were fucosylated next to a selection of N-glycans directly on a microarray slide using a recombinant fucosyltransferase and GDP-fucose or GDP-6-azidofucose as donor. Binding assays with fluorescently labelled human CLRs DC-SIGN, DC-SIGNR and MGL revealed the novel O-glycan O8 as the best ligand for MGL from our panel. Significant binding to DC-SIGN was also found for azido-fucosylated glycans. Contrasting binding specificities were observed between the monovalent carbohydrate recognition domain (CRD) and the tetravalent extracellular domain (ECD) of DC-SIGNR.


Assuntos
Receptores de Superfície Celular/metabolismo , Moléculas de Adesão Celular , Humanos , Lectinas Tipo C , Ligantes , Polissacarídeos
9.
Int J Mol Sci ; 21(15)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722514

RESUMO

C-type lectin receptor (CLR)/carbohydrate recognition occurs through low affinity interactions. Nature compensates that weakness by multivalent display of the lectin carbohydrate recognition domain (CRD) at the cell surface. Mimicking these low affinity interactions in vitro is essential to better understand CLR/glycan interactions. Here, we present a strategy to create a generic construct with a tetrameric presentation of the CRD for any CLR, termed TETRALEC. We applied our strategy to a naturally occurring tetrameric CRD, DC-SIGNR, and compared the TETRALEC ligand binding capacity by synthetic N- and O-glycans microarray using three different DC-SIGNR constructs i) its natural tetrameric counterpart, ii) the monomeric CRD and iii) a dimeric Fc-CRD fusion. DC-SIGNR TETRALEC construct showed a similar binding profile to that of its natural tetrameric counterpart. However, differences observed in recognition of low affinity ligands underlined the importance of the CRD spatial arrangement. Moreover, we further extended the applications of DC-SIGNR TETRALEC to evaluate CLR/pathogens interactions. This construct was able to recognize heat-killed Candida albicans by flow cytometry and confocal microscopy, a so far unreported specificity of DC-SIGNR. In summary, the newly developed DC-SIGNR TETRALEC tool proved to be useful to unravel novel CLR/glycan interactions, an approach which could be applied to other CLRs.


Assuntos
Candida albicans/metabolismo , Citometria de Fluxo , Fragmentos Fc das Imunoglobulinas/química , Lectinas Tipo C/química , Proteínas Recombinantes de Fusão/química , Candida albicans/citologia , Fragmentos Fc das Imunoglobulinas/genética , Lectinas Tipo C/genética , Ligantes , Proteínas Recombinantes de Fusão/genética
10.
Anal Chem ; 90(21): 12536-12543, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30350619

RESUMO

A solution-phase enzymatic assay has been developed to track bacterial glycosyl hydrolase activity by surface-assisted MALDI-TOF mass spectrometry. Lactose was equipped with an azide-functionalized linker and was supplemented to bacterial cultures as an artificial substrate for bacterial ß-galactosidase enzyme. The azide linked glycoside probe was then covalently captured on an alkyne-functionalized indium tin oxide sample plate via a bio-orthogonal copper-catalyzed azide alkyne cycloaddition (CuAAC). The noncovalent immobilization of the alkyne capture tag via hydrophobic interactions on the ITO-sample plate allowed the analysis of the probe conjugate by surface-based mass spectrometry. The ratio of digested to nondigested lactose probe was then employed as a measure for bacterial hydrolase activity, which correlated well with bacterial growth measured by optical density. In addition, we established in a proof of concept experiment that the setup was well suited to identify antibiotic susceptibility of bacterial strains with a performance comparable to current state-of-the-art methods. While the proof of concept version is limited to the identification of a single enzyme activity, we envisage that the use of multiple substrate probes in a multiplexed version will allow the quantification of various glycosyl hydrolase activities with clinical relevance in a single experiment.


Assuntos
Alcinos/química , Azidas/química , Lactose/análogos & derivados , Sondas Moleculares/química , beta-Galactosidase/análise , Ampicilina/farmacologia , Antibacterianos/farmacologia , Aspergillus oryzae/enzimologia , Aspergillus oryzae/crescimento & desenvolvimento , Química Click , Cobre/química , Reação de Cicloadição , Ensaios Enzimáticos/métodos , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Técnicas de Sonda Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , beta-Galactosidase/química
11.
Biochim Biophys Acta ; 1860(8): 1676-87, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26953846

RESUMO

BACKGROUND: Many treatment options especially for cancer show a low efficacy for the majority of patients demanding improved biomarker panels for patient stratification. Changes in glycosylation are a hallmark of many cancers and inflammatory diseases and show great potential as clinical disease markers. The large inter-subject variability in glycosylation due to hereditary and environmental factors can complicate rapid transfer of glycan markers into the clinical practice but also presents an opportunity for personalized medicine. SCOPE OF REVIEW: This review discusses opportunities of glycan biomarkers in personalized medicine and reviews the methodology for N-glycan analysis with a specific focus on methods for absolute quantification. MAJOR CONCLUSIONS: The entry into the clinical practice of glycan markers is delayed in large part due to a lack of adequate methodology for the precise and robust quantification of protein glycosylation. Only absolute glycan quantification can provide a complete picture of the disease related changes and will provide the method robustness required by clinical applications. GENERAL SIGNIFICANCE: Glycan biomarkers have a huge potential as disease markers for personalized medicine. The use of stable isotope labeled glycans as internal standards and heavy-isotope labeling methods will provide the necessary method precision and robustness acceptable for clinical use. This article is part of a Special Issue entitled "Glycans in personalized medicine" Guest Editor: Professor Gordan Lauc.


Assuntos
Glicômica/métodos , Polissacarídeos , Medicina de Precisão/métodos , Biomarcadores , Humanos , Polissacarídeos/genética , Polissacarídeos/metabolismo
12.
Glycobiology ; 25(6): 607-16, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25573275

RESUMO

We determined the specificity of BTL, a lectin from the red marine alga Bryothamnion triquetrum, toward fucosylated oligosaccharides. BTL showed a strict specificity for the core α1,6-fucosylation, which is an important marker for cancerogenesis and quality control of therapeutical antibodies. The double fucosylation α1,6 and α1,3 was also recognized, but the binding was totally abolished in the sole presence of the α1,3-fucosylation. A more detailed analysis of the specificity of BTL showed a preference for bi- and tri-antennary nonbisected N-glycans. Sialylation or fucosylation at the nonreducing end of N-glycans did not affect the recognition by the lectin. BTL displayed a strong affinity for a core α1,6-fucosylated octasaccharide with a Kd of 12 µM by titration microcalorimetry. The structural characterization of the interaction between BTL and the octasaccharide was obtained by STD-NMR. It demonstrated an extended epitope for recognition that includes the fucose residue, the distal GlcNAc and one mannose residue. Recombinant rBTL was obtained in Escherichia coli and characterized. Its binding properties for carbohydrates were studied using hemagglutination tests and glycan array analysis. rBTL was able to agglutinate rabbit erythrocytes with strong hemagglutination activity only after treatment with papain and trypsin, indicating that its ligands were not directly accessible at the cell surface. The hemagglutinating properties of rBTL confirm the correct folding and functional state of the protein. The results show BTL as a potent candidate for cancer diagnosis and as a reagent for the preparation and quality control of antibodies lacking core α1,6-fucosylated N-glycans.


Assuntos
Proteínas de Algas/química , Fucose/química , Lectinas/química , Polissacarídeos/química , Rodófitas/química , Proteínas de Algas/biossíntese , Proteínas de Algas/isolamento & purificação , Animais , Sítios de Ligação , Configuração de Carboidratos , Sequência de Carboidratos , Eritrócitos/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Lectinas/biossíntese , Lectinas/isolamento & purificação , Dados de Sequência Molecular , Coelhos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato
13.
Anal Chem ; 87(1): 431-40, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25411795

RESUMO

Due to their electrical conductivity and optical transparency, slides coated with a thin layer of indium tin oxide (ITO) are the standard substrate for protein imaging mass spectrometry on tissue samples by MALDI-TOF MS. We have now studied the rf magnetron sputtering deposition parameters to prepare ITO thin films on glass substrates with the required nanometric surface structure for their use in the matrix-free imaging of metabolites and small-molecule drugs, without affecting the transparency required for classical histology. The custom-made surfaces were characterized by atomic force microscopy, scanning electron microscopy, ellipsometry, UV, and laser desorption ionization MS (LDI-MS) and employed for the LDI-MS-based analysis of glycans and druglike molecules, the quantification of lactose in milk by isotopic dilution, and metabolite imaging on mouse brain tissue samples.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Metabolômica , Nanoestruturas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Compostos de Estanho/química , Animais , Encéfalo/metabolismo , Humanos , Marcação por Isótopo , Lactose/análise , Lasers , Camundongos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Leite/química , Preparações Farmacêuticas/análise , Espectroscopia Fotoeletrônica , Polissacarídeos/análise
14.
Anal Chem ; 87(22): 11460-7, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26482441

RESUMO

Methods for the absolute quantification of glycans are needed in glycoproteomics, during development and production of biopharmaceuticals and for the clinical analysis of glycan disease markers. Here we present a strategy for the chemo-enzymatic synthesis of (13)C labeled N-glycan libraries and provide an example for their use as internal standards in the profiling and absolute quantification of mAb glycans by matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. A synthetic biantennary glycan precursor was (13)C-labeled on all four amino sugar residues and enzymatically derivatized to produce a library of 15 glycan isotopologues with a mass increment of 8 Da over the natural products. Asymmetrically elongated glycans were accessible by performing enzymatic reactions on partially protected UV-absorbing intermediates, subsequent fractionation by preparative HPLC, and final hydrogenation. Using a preformulated mixture of eight internal standards, we quantified the glycans in a monoclonal therapeutic antibody with excellent precision and speed.


Assuntos
Espectrometria de Massas/métodos , Polissacarídeos/análise , Polissacarídeos/biossíntese , Isótopos de Carbono , Polissacarídeos/síntese química , Polissacarídeos/química , Padrões de Referência
15.
Chemistry ; 21(32): 11408-16, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26177718

RESUMO

Detection of molecular recognition processes requires robust, specific, and easily implementable sensing methods, especially for screening applications. Here, we propose the difluoroacetamide moiety (an acetamide bioisoster) as a novel tag for detecting by NMR analysis those glycan-protein interactions that involve N-acetylated sugars. Although difluoroacetamide has been used previously as a substituent in medicinal chemistry, here we employ it as a specific sensor to monitor interactions between GlcNAc-containing glycans and a model lectin (wheat germ agglutinin). In contrast to the widely employed trifluoroacetamide group, the difluoroacetamide tag contains geminal (1) H and (19) F atoms that allow both (1) H and (19) F NMR methods for easy and robust detection of molecular recognition processes involving GlcNAc- (or GalNAc-) moieties over a range of binding affinities. The CHF2 CONH- moiety behaves in a manner that is very similar to that of the natural acetamide fragment in the involved aromatic-sugar interactions, providing analogous binding energy and conformations, whereas the perfluorinated CF3 CONH- analogue differs more significantly.


Assuntos
Acetamidas/química , Flúor/química , Fluoracetatos/química , Polissacarídeos/química , Ligação de Hidrogênio , Lectinas/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares
16.
J Biol Chem ; 288(29): 21015-21028, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23754284

RESUMO

Fucose is a common monosaccharide component of cell surfaces and is involved in many biological recognition events. Therefore, definition and exploitation of the specificity of the enzymes (fucosyltransferases) involved in fucosylation is a recurrent theme in modern glycosciences. Despite various studies, the specificities of many fucosyltransferases are still unknown, so new approaches are required to study these. The model nematode Caenorhabditis elegans expresses a wide range of fucosylated glycans, including N-linked oligosaccharides with unusual complex core modifications. Up to three fucose residues can be present on the standard N,N'-diacetylchitobiose unit of these N-glycans, but only the fucosyltransferases responsible for transfer of two of these (the core α1,3-fucosyltransferase FUT-1 and the core α1,6-fucosyltransferase FUT-8) were previously characterized. By use of a glycan library in both array and solution formats, we were able to reveal that FUT-6, another C. elegans α1,3-fucosyltransferase, modifies nematode glycan cores, specifically the distal N-acetylglucosamine residue; this result is in accordance with glycomic analysis of fut-6 mutant worms. This core-modifying activity of FUT-6 in vitro and in vivo is in addition to its previously determined ability to synthesize Lewis X epitopes in vitro. A larger scale synthesis of a nematode N-glycan core in vitro using all three fucosyltransferases was performed, and the nature of the glycosidic linkages was determined by NMR. FUT-6 is probably the first eukaryotic glycosyltransferase whose specificity has been redefined with the aid of glycan microarrays and so is a paradigm for the study of other unusual glycosidic linkages in model and parasitic organisms.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Fucosiltransferases/metabolismo , Análise em Microsséries , Polissacarídeos/biossíntese , Animais , Vias Biossintéticas , Fucose/química , Fucose/metabolismo , Glicômica , Glicosilação , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Proteínas Mutantes/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Soluções , Especificidade por Substrato
17.
Glycobiology ; 24(6): 507-17, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24658466

RESUMO

Carbohydrates participate in almost every aspect of biology from protein sorting to modulating cell differentiation and cell-cell interactions. To date, the majority of data gathered on glycan expression has been obtained via analysis with either anti-glycan antibodies or lectins. A detailed understanding of the specificities of these reagents is critical to the analysis of carbohydrates in biological systems. Glycan microarrays are increasingly used to determine the binding specificity of glycan-binding proteins (GBPs). In this study, six different glycan microarray platforms with different modes of glycan presentation were compared using five well-known lectins; concanavalin A, Helix pomatia agglutinin, Maackia amurensis lectin I, Sambucus nigra agglutinin and wheat germ agglutinin. A new method (universal threshold) was developed to facilitate systematic comparisons across distinct array platforms. The strongest binders of each lectin were identified using the universal threshold across all platforms while identification of weaker binders was influenced by platform-specific factors including presentation of determinants, array composition and self-reported thresholding methods. This work compiles a rich dataset for comparative analysis of glycan array platforms and has important implications for the implementation of microarrays in the characterization of GBPs.


Assuntos
Proteínas de Transporte/metabolismo , Análise em Microsséries , Polissacarídeos/metabolismo , Sítios de Ligação , Carboidratos/biossíntese , Proteínas de Transporte/química , Concanavalina A/química , Concanavalina A/metabolismo , Lectinas/química , Lectinas/metabolismo , Fito-Hemaglutininas/química , Fito-Hemaglutininas/metabolismo , Polissacarídeos/química , Aglutininas do Germe de Trigo/química , Aglutininas do Germe de Trigo/metabolismo
18.
Chembiochem ; 15(6): 844-51, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24616167

RESUMO

Myeloid C-type lectin receptors (CLRs) expressed by antigen-presenting cells are pattern-recognition receptors involved in the recognition of pathogens as well as of self-antigens. The interaction of carbohydrate ligands with a CLR can trigger immune responses. Although several CLR ligands are known, there is limited insight into CLR targeting by carbohydrate ligands. The weak affinity of lectin-carbohydrate interactions often renders multivalent carbohydrate presentation necessary. Here, we have analyzed the impact of multivalent presentation of the trisaccharide Lewis X (Le(X) ) epitope on its interaction with the CLR macrophage galactose-type lectin-1 (MGL-1). Glycan arrays, including N-glycan structures with terminal Le(X) , were prepared by enzymatic extension of immobilized synthetic core structures with two recombinant glycosyltransferases. Incubation of arrays with an MGL-1-hFc fusion protein showed up to tenfold increased binding to multiantennary N-glycans displaying Le(X) structures, compared to monovalent Le(X) trisaccharide. Multivalent presentation of Le(X) on the model antigen ovalbumin (OVA) led to increased cytokine production in a dendritic cell /T cell coculture system. Furthermore, immunization of mice with Le(X) -OVA conjugates modulated cytokine production and the humoral response, compared to OVA alone. This study provides insights into how multivalent carbohydrate-lectin interactions can be exploited to modulate immune responses.


Assuntos
Assialoglicoproteínas/química , Lectinas Tipo C/química , Antígenos CD15/química , Proteínas de Membrana/química , Animais , Assialoglicoproteínas/genética , Assialoglicoproteínas/metabolismo , Sequência de Carboidratos , Células Cultivadas , Técnicas de Cocultura , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Humanos , Imunidade Humoral , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Antígenos CD15/imunologia , Antígenos CD15/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Ovalbumina/química , Ovalbumina/imunologia , Polissacarídeos/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
19.
Chembiochem ; 15(11): 1621-6, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-25044519

RESUMO

As cellular-derived vesicles largely maintain the biomolecule composition of their original tissue, exosomes, which are found in nearly all body fluids, have enormous potential as clinical disease markers. A major bottleneck in the development of exosome-based diagnostic assays is the challenging purification of these vesicles; this requires time-consuming and instrument-based procedures. We employed lectin arrays to identify potential lectins as probes for affinity-based isolation of exosomes from the urinary matrix. We found three lectins that showed specific interactions to vesicles and no (or only residual) interaction with matrix proteins. Based on these findings a bead-based method for lectin-based isolation of exosomes from urine was developed as a sample preparation step for exosome-based biomarker research.


Assuntos
Exossomos/metabolismo , Lectinas/análise , Sondas Moleculares/análise , Análise Serial de Proteínas , Urina/citologia , Exossomos/química , Humanos , Lectinas/isolamento & purificação , Sondas Moleculares/isolamento & purificação
20.
Analyst ; 139(11): 2873-83, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24737011

RESUMO

Weathering steel has been employed for the first time to prepare sample plates for matrix-free laser desorption ionisation mass spectrometry (LDI-MS) of small molecules up to a mass range of around 1500 Da. The effective UV absorption, heat conductivity and porosity of the nanostructured inner rust layer formed during passivation determine the excellent performance in LDI-MS for a broad range of different analyte classes. The inexpensive material was evaluated in a series of relevant analytical applications ranging from the matrix-free detection of serum metabolites, lactose quantification, lipid analysis in milk to the glycoprofiling of antibodies and imaging mass spectrometry of brain tissue samples.


Assuntos
Nanoestruturas , Preparações Farmacêuticas/análise , Polissacarídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Aço , Humanos , Preparações Farmacêuticas/sangue , Polissacarídeos/sangue , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA