Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 139(9): 3528-3536, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28230359

RESUMO

A compact and stable bicyclic bridged ketal was developed as a ligand for the asialoglycoprotein receptor (ASGPR). This compound showed excellent ligand efficiency, and the molecular details of binding were revealed by the first X-ray crystal structures of ligand-bound ASGPR. This analogue was used to make potent di- and trivalent binders of ASGPR. Extensive characterization of the function of these compounds showed rapid ASGPR-dependent cellular uptake in vitro and high levels of liver/plasma selectivity in vivo. Assessment of the biodistribution in rodents of a prototypical Alexa647-labeled trivalent conjugate showed selective hepatocyte targeting with no detectable distribution in nonparenchymal cells. This molecule also exhibited increased ASGPR-directed hepatocellular uptake and prolonged retention compared to a similar GalNAc derived trimer conjugate. Selective release in the liver of a passively permeable small-molecule cargo was achieved by retro-Diels-Alder cleavage of an oxanorbornadiene linkage, presumably upon encountering intracellular thiol. Therefore, the multicomponent construct described here represents a highly efficient delivery vehicle to hepatocytes.


Assuntos
Receptor de Asialoglicoproteína/metabolismo , Compostos Bicíclicos com Pontes/química , Hepatócitos/metabolismo , Cetonas/química , Fígado/metabolismo , Polímeros/química , Compostos Bicíclicos com Pontes/metabolismo , Cristalografia por Raios X , Portadores de Fármacos/química , Humanos , Cetonas/metabolismo , Fígado/citologia , Modelos Moleculares , Estrutura Molecular , Polímeros/metabolismo
2.
Angew Chem Int Ed Engl ; 56(51): 16218-16222, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29073340

RESUMO

Targeting of the human ribosome is an unprecedented therapeutic modality with a genome-wide selectivity challenge. A liver-targeted drug candidate is described that inhibits ribosomal synthesis of PCSK9, a lipid regulator considered undruggable by small molecules. Key to the concept was the identification of pharmacologically active zwitterions designed to be retained in the liver. Oral delivery of the poorly permeable zwitterions was achieved by prodrugs susceptible to cleavage by carboxylesterase 1. The synthesis of select tetrazole prodrugs was crucial. A cell-free in vitro translation assay containing human cell lysate and purified target mRNA fused to a reporter was used to identify active zwitterions. In vivo PCSK9 lowering by oral dosing of the candidate prodrug and quantification of the drug fraction delivered to the liver utilizing an oral positron emission tomography 18 F-isotopologue validated our liver-targeting approach.


Assuntos
Fígado/efeitos dos fármacos , Inibidores de PCSK9 , Pró-Proteína Convertase 9/biossíntese , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Dose-Resposta a Droga , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/enzimologia , Fígado/metabolismo , Estrutura Molecular , Pró-Proteína Convertase 9/metabolismo , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
3.
Prostaglandins Other Lipid Mediat ; 94(1-2): 3-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21040800

RESUMO

Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites produced by cytochrome P450 epoxygenases which are highly expressed in hepatocytes. The functions of EETs in hepatocytes are not well understood. In this study, we investigated the effects of 14,15-EETs treatment on the insulin signal transduction pathway in hepatocytes. We report that chronic treatment, not acute treatment, with 30 µM 14,15-EETs prevents palmitate induced insulin resistance and potentiates insulin action in cultured HepG2 hepatocytes. 14,15-EETs increase Akt phosphorylation at S473, activating Akt, in an insulin dependent manner in HepG2 cells. Under insulin resistant conditions induced by palmitate, 14,15-EETs restore the insulin response by increasing S473-phosphorylated Akt. 8,9-EETs and 11,12-EETs demonstrated similar effects to 14,15-EETs. Furthermore, 14,15-EETs potentiate insulin-suppression of gluconeogenesis in cultured H4IIE hepatocytes. To elucidate the mechanism of EETs function, we analyzed the insulin signaling factors upstream of Akt. Inhibition of phosphatidylinositol 3-kinase (PI3K) with LY294002 attenuated the 14,15-EETs-induced activating phosphorylation of Akt. 14,15-EETs reduced palmitate-stimulated phosphorylation of IRS-1 on S312 and phosphorylation of c-Jun N-terminal kinase (JNK) at threonine 183 and tyrosine 185 residues. The regulation of insulin sensitivity in cultured hepatocytes by chronic 14,15-EETs treatment appears to involve the JNK-IRS-PI3K pathway. The requirement of chronic treatment with EETs suggests that the effects of EETs on insulin response may be indirect.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Hepatócitos/metabolismo , Resistência à Insulina , Insulina/metabolismo , Transdução de Sinais , Ácido 8,11,14-Eicosatrienoico/administração & dosagem , Ácido 8,11,14-Eicosatrienoico/farmacologia , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação
4.
J Pharmacol Exp Ther ; 332(3): 1100-6, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19933370

RESUMO

Phospholipid transfer protein (PLTP) plays an important role in atherogenesis, and its function goes well beyond that of transferring phospholipids between lipoprotein particles. Previous studies showed that genetic deficiency of PLTP in mice causes a substantially impaired hepatic secretion of apolipoprotein-B (apoB), the major protein of atherogenic lipoproteins. To understand whether the impaired apoB secretion is a direct result from lack of PLTP activity, in this study, we further investigated the function of PLTP in apoB secretion by using PLTP inhibitors. We identified a series of compounds containing a 3-benzazepine core structure that inhibit PLTP activity. Compound A, the most potent inhibitor, was characterized further and had little cross-reactivity with microsomal triglyceride transfer protein. Compound A reduced apoB secretion in human hepatoma cell lines and mouse primary hepatocytes. Furthermore, we confirmed that the reduction of apoB secretion mediated by compound A is PLTP-dependent, because the PLTP inhibitor had no effect on apoB secretion from PLTP-deficient hepatocytes. These studies provided evidence that PLTP activity regulates apoB secretion and pharmacologic inhibition of PLTP may be a new therapy for dyslipidemia by reducing apoB secretion.


Assuntos
Apolipoproteínas B/metabolismo , Benzazepinas/farmacologia , Hepatócitos/efeitos dos fármacos , Proteínas de Transferência de Fosfolipídeos/antagonistas & inibidores , Animais , Benzazepinas/química , Linhagem Celular Tumoral , Hepatócitos/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Técnicas In Vitro , Camundongos , Camundongos Knockout , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/genética , Relação Estrutura-Atividade
5.
J Med Chem ; 61(13): 5704-5718, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-29878763

RESUMO

The optimization of a new class of small molecule PCSK9 mRNA translation inhibitors is described. The potency, physicochemical properties, and off-target pharmacology associated with the hit compound (1) were improved by changes to two regions of the molecule. The last step in the synthesis of the congested amide center was enabled by three different routes. Subtle structural changes yielded significant changes in pharmacology and off-target margins. These efforts led to the identification of 7l and 7n with overall profiles suitable for in vivo evaluation. In a 14-day toxicology study, 7l demonstrated an improved safety profile vs lead 7f. We hypothesize that the improved safety profile is related to diminished binding of 7l to nontranslating ribosomes and an apparent improvement in transcript selectivity due to the lower strength of 7l stalling of off-target proteins.


Assuntos
Inibidores de PCSK9 , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Animais , Desenho de Fármacos , Masculino , Inibidores de Proteases/efeitos adversos , Inibidores de Proteases/metabolismo , Ratos , Ratos Sprague-Dawley , Segurança , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA