Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Genome Res ; 34(3): 441-453, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38604731

RESUMO

Aneuploidy is widely observed in both unicellular and multicellular eukaryotes, usually associated with adaptation to stress conditions. Chromosomal duplication stability is a tradeoff between the fitness cost of having unbalanced gene copies and the potential fitness gained from increased dosage of specific advantageous genes. Trypanosomatids, a family of protozoans that include species that cause neglected tropical diseases, are a relevant group to study aneuploidies. Their life cycle has several stressors that could select for different patterns of chromosomal duplications and/or losses, and their nearly universal use of polycistronic transcription increases their reliance on gene expansion/contraction, as well as post-transcriptional control as mechanisms for gene expression regulation. By evaluating the data from 866 isolates covering seven trypanosomatid genera, we have revealed that aneuploidy tolerance is an ancestral characteristic of trypanosomatids but has a reduced occurrence in a specific monophyletic clade that has undergone large genomic reorganization and chromosomal fusions. We have also identified an ancient chromosomal duplication that was maintained across these parasite's speciation, named collectively as the trypanosomatid ancestral supernumerary chromosome (TASC). TASC has most genes in the same coding strand, is expressed as a disomic chromosome (even having four copies), and has increased potential for functional variation, but it purges highly deleterious mutations more efficiently than other chromosomes. The evidence of stringent control over gene expression in this chromosome suggests that these parasites have adapted to mitigate the fitness cost associated with this ancient chromosomal duplication.


Assuntos
Aneuploidia , Duplicação Cromossômica , Regulação da Expressão Gênica , Genoma de Protozoário , Evolução Molecular , Trypanosomatina/genética , Filogenia
2.
PLoS Pathog ; 19(3): e1011230, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36940219

RESUMO

In Brazil, Leishmania braziliensis is the main causative agent of the neglected tropical disease, cutaneous leishmaniasis (CL). CL presents on a spectrum of disease severity with a high rate of treatment failure. Yet the parasite factors that contribute to disease presentation and treatment outcome are not well understood, in part because successfully isolating and culturing parasites from patient lesions remains a major technical challenge. Here we describe the development of selective whole genome amplification (SWGA) for Leishmania and show that this method enables culture-independent analysis of parasite genomes obtained directly from primary patient skin samples, allowing us to circumvent artifacts associated with adaptation to culture. We show that SWGA can be applied to multiple Leishmania species residing in different host species, suggesting that this method is broadly useful in both experimental infection models and clinical studies. SWGA carried out directly on skin biopsies collected from patients in Corte de Pedra, Bahia, Brazil, showed extensive genomic diversity. Finally, as a proof-of-concept, we demonstrated that SWGA data can be integrated with published whole genome data from cultured parasite isolates to identify variants unique to specific geographic regions in Brazil where treatment failure rates are known to be high. SWGA provides a relatively simple method to generate Leishmania genomes directly from patient samples, unlocking the potential to link parasite genetics with host clinical phenotypes.


Assuntos
Genoma de Protozoário , Leishmaniose Cutânea , Parasitologia , Pele , Genoma de Protozoário/genética , Humanos , Genética Populacional , Pele/parasitologia , Brasil , Leishmaniose Cutânea/parasitologia , Parasitologia/métodos , Leishmania braziliensis/genética
3.
Nucleic Acids Res ; 46(22): 11835-11846, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30380080

RESUMO

Leishmania species are protozoan parasites whose remarkably plastic genome limits the establishment of effective genetic manipulation and leishmaniasis treatment. The strategies used by Leishmania to maintain its genome while allowing variability are not fully understood. Here, we used DiCre-mediated conditional gene deletion to show that HUS1, a component of the 9-1-1 (RAD9-RAD1-HUS1) complex, is essential and is required for a G2/M checkpoint. By analyzing genome-wide instability in HUS1 ablated cells, HUS1 is shown to have a conserved role, by which it preserves genome stability and also a divergent role, by which it promotes genome variability. These roles of HUS1 are related to distinct patterns of formation and resolution of single-stranded DNA and γH2A, throughout the cell cycle. Our findings suggest that Leishmania 9-1-1 subunits have evolved to co-opt canonical genomic maintenance and genomic variation functions. Hence, this study reveals a pivotal function of HUS1 in balancing genome stability and transmission in Leishmania. These findings may be relevant to understanding the evolution of genome maintenance and plasticity in other pathogens and eukaryotes.


Assuntos
Proteínas de Ciclo Celular/genética , Enzimas Reparadoras do DNA/genética , Endonucleases/genética , Genoma de Protozoário , Leishmania major/genética , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/metabolismo , Biologia Computacional/métodos , Meios de Cultura/química , Enzimas Reparadoras do DNA/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Endonucleases/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Deleção de Genes , Regulação da Expressão Gênica , Engenharia Genética , Variação Genética , Instabilidade Genômica , Histonas/genética , Histonas/metabolismo , Leishmania major/metabolismo , Sequenciamento Completo do Genoma
4.
Proc Natl Acad Sci U S A ; 114(5): 1135-1140, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096418

RESUMO

Carbapenem-resistant Enterobacteriaceae (CRE) are among the most severe threats to the antibiotic era. Multiple different species can exhibit resistance due to many different mechanisms, and many different mobile elements are capable of transferring resistance between lineages. We prospectively sampled CRE from hospitalized patients from three Boston-area hospitals, together with a collection of CRE from a single California hospital, to define the frequency and characteristics of outbreaks and determine whether there is evidence for transfer of strains within and between hospitals and the frequency with which resistance is transferred between lineages or species. We found eight species exhibiting resistance, with the majority of our sample being the sequence type 258 (ST258) lineage of Klebsiella pneumoniae There was very little evidence of extensive hospital outbreaks, but a great deal of variation in resistance mechanisms and the genomic backgrounds carrying these mechanisms. Local transmission was evident in clear phylogeographic structure between the samples from the two coasts. The most common resistance mechanisms were KPC (K. pneumoniae carbapenemases) beta-lactamases encoded by blaKPC2, blaKPC3, and blaKPC4, which were transferred between strains and species by seven distinct subgroups of the Tn4401 element. We also found evidence for previously unrecognized resistance mechanisms that produced resistance when transformed into a susceptible genomic background. The extensive variation, together with evidence of transmission beyond limited clonal outbreaks, points to multiple unsampled transmission chains throughout the continuum of care, including asymptomatic carriage and transmission of CRE. This finding suggests that to control this threat, we need an aggressive approach to surveillance and isolation.


Assuntos
Carbapenêmicos/farmacologia , Elementos de DNA Transponíveis/genética , Surtos de Doenças , Infecções por Enterobacteriaceae/microbiologia , Enterobacteriaceae/efeitos dos fármacos , Fatores R/genética , Resistência beta-Lactâmica/genética , Proteínas de Bactérias/genética , Boston/epidemiologia , Células Clonais , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , Infecção Hospitalar/transmissão , Enterobacteriaceae/enzimologia , Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/transmissão , Variação Genética , Genoma Bacteriano , Humanos , Estudos Prospectivos , Alinhamento de Sequência , Transformação Bacteriana , Resistência beta-Lactâmica/fisiologia , beta-Lactamases/genética
5.
BMC Genomics ; 16: 715, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26384787

RESUMO

BACKGROUND: The Leishmania (Viannia) braziliensis complex is responsible for most cases of New World tegumentary leishmaniasis. This complex includes two closely related species but with different geographic distribution and disease phenotypes, L. (V.) peruviana and L. (V.) braziliensis. However, the genetic basis of these differences is not well understood and the status of L. (V.) peruviana as distinct species has been questioned by some. Here we sequenced the genomes of two L. (V.) peruviana isolates (LEM1537 and PAB-4377) using Illumina high throughput sequencing and performed comparative analyses against the L. (V.) braziliensis M2904 reference genome. Comparisons were focused on the detection of Single Nucleotide Polymorphisms (SNPs), insertions and deletions (INDELs), aneuploidy and gene copy number variations. RESULTS: We found 94,070 variants shared by both L. (V.) peruviana isolates (144,079 in PAB-4377 and 136,946 in LEM1537) against the L. (V.) braziliensis M2904 reference genome while only 26,853 variants separated both L. (V.) peruviana genomes. Analysis in coding sequences detected 26,750 SNPs and 1,513 indels shared by both L. (V.) peruviana isolates against L. (V.) braziliensis M2904 and revealed two L. (V.) braziliensis pseudogenes that are likely to have coding potential in L. (V.) peruviana. Chromosomal read density and allele frequency profiling showed a heterogeneous pattern of aneuploidy with an overall disomic tendency in both L. (V.) peruviana isolates, in contrast with a trisomic pattern in the L. (V.) braziliensis M2904 reference. Read depth analysis allowed us to detect more than 368 gene expansions and 14 expanded gene arrays in L. (V.) peruviana, and the likely absence of expanded amastin gene arrays. CONCLUSIONS: The greater numbers of interspecific SNP/indel differences between L. (V.) peruviana and L. (V.) braziliensis and the presence of different gene and chromosome copy number variations support the classification of both organisms as closely related but distinct species. The extensive nucleotide polymorphisms and differences in gene and chromosome copy numbers in L. (V.) peruviana suggests the possibility that these may contribute to some of the unique features of its biology, including a lower pathology and lack of mucosal development.


Assuntos
Leishmania braziliensis/genética , Leishmania/genética , Variações do Número de Cópias de DNA/genética , Genômica , Polimorfismo de Nucleotídeo Único/genética
6.
PLoS One ; 16(11): e0258637, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34727117

RESUMO

Peptide-based vaccines have demonstrated to be an important way to induce long-lived immune responses and, therefore, a promising strategy in the rational of vaccine development. As to malaria, among the classic vaccine targets, the Apical membrane antigen (AMA-1) was proven to have important B cell epitopes that can induce specific immune response and, hence, became key players for a vaccine approach. The peptides selection was carried out using a bioinformatic approach based on Hidden Markov Models profiles of known antigens and propensity scale methods based on hydrophilicity and secondary structure prediction. The antigenicity of the selected B-cell peptides was assessed by multiple serological assays using sera from acute P.vivax infected subjects. The synthetic peptides were recognized by 45.5%, 48.7% and 32.2% of infected subjects for peptides I, II and III respectively. Moreover, when synthetized together (tripeptide), the reactivity increases up to 62%, which is comparable to the reactivity found against the whole protein PvAMA-1 (57%). Furthermore, IgG reactivity against the tripeptide after depletion was reduced by 42%, indicating that these epitopes may be responsible for a considerable part of the protein immunogenicity. These results represent an excellent perspective regarding future chimeric vaccine constructions that may come to contemplate several targets with the potential to generate the robust and protective immune response that a vivax malaria vaccine needs to succeed.


Assuntos
Antígenos de Protozoários/imunologia , Epitopos de Linfócito B/imunologia , Vacinas Antimaláricas/imunologia , Proteínas de Membrana/imunologia , Peptídeos/imunologia , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Adulto , Sequência de Aminoácidos , Formação de Anticorpos/imunologia , Estudos de Casos e Controles , Feminino , Humanos , Epitopos Imunodominantes/imunologia , Imunoglobulina G/imunologia , Malária Vivax/epidemiologia , Malária Vivax/imunologia , Masculino , Pessoa de Meia-Idade , Peptídeos/química , Estrutura Secundária de Proteína
7.
PLoS One ; 14(10): e0223364, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31577829

RESUMO

BACKGROUND: Prophages play a significant role in prokaryotic evolution, often altering the function of the cell that they infect via transfer of new genes e.g., virulence or antibiotic resistance factors, inactivation of existing genes or by modifying gene expression. Recently, phage therapy has gathered renewed interest as a promising alternative to control bacterial infections. Cataloging the repertoire of prophages in large collections of species' genomes is an important initial step in understanding their evolution and potential therapeutic utility. However, current widely-used tools for identifying prophages within bacterial genome sequences are mainly web-based, can have long response times, and do not scale to keep pace with the many thousands of genomes currently being sequenced routinely. METHODOLOGY: In this work, we present ProphET, an easy to install prophage predictor to be used in Linux operation system, without the constraints associated with a web-based tool. ProphET predictions rely on similarity searches against a database of prophage genes, taking as input a bacterial genome sequence in FASTA format and its corresponding gene annotation in GFF. ProphET identifies prophages in three steps: similarity search, calculation of the density of prophage genes, and edge refinement. ProphET performance was evaluated and compared with other phage predictors based on a set of 54 bacterial genomes containing 267 manually annotated prophages. FINDINGS AND CONCLUSIONS: ProphET identifies prophages in bacterial genomes with high precision and offers a fast, highly scalable alternative to widely-used web-based applications for prophage detection.


Assuntos
Biologia Computacional/métodos , Genômica/métodos , Prófagos/genética , Software , Bases de Dados de Ácidos Nucleicos , Genoma Viral , Anotação de Sequência Molecular , Sensibilidade e Especificidade , Navegador
8.
Acta Trop ; 200: 105161, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31494121

RESUMO

The nitro-heterocyclic compound benznidazole (BZ) is the first-line drug for the treatment of Chagas disease, caused by the protozoan Trypanosoma cruzi. However, therapeutic failures are common for reasons that include the influences of parasite and host genetics, the effects of toxicity on adherence to treatment, and difficulties in demonstrating parasitological cure. To obtain information on the origin of the resistance to BZ and eliminate from the scenery the participation of the host, initially we mapped the susceptibility to the drug in thirteen species of seven genera of the family Trypanosomatidae. We verified that all Trypanosoma species are sensitive to low concentrations of the drug (IC50 2.7 to 25 µM) while Non-Trypanosoma species are highly resistant to these concentrations. The two groups of parasites correspond to the major phylogenetic lineages of trypanosomatids. Next, we searched in the trypanosomatid genome databases homologs of two type-I nitroreductases (NTR-1 and OYE) and an ABC transporter (ABCG1) that have been associated with BZ resistance in T. cruzi. The predicted proteins were characterized regarding domains and used for phylogenetic analyses. Homologous NTR-1 genes were found in all trypanosomatids investigated and the structural characteristics of the enzyme suggest that it may be functional. OYE genes were absent in BZ-sensitive African trypanosomes, which excludes the participation of this enzyme in BZ bio-activation. Two copies of ABCG1 genes were observed in most BZ resistant species, while Trypanosoma species exhibit only one copy per haploid genome. Functional studies are required to verify the involvement of these genes in BZ resistance. In addition, since multiple mechanisms can contribute to BZ susceptibility, our study poses a range of organisms highly resistant to BZ in which these aspects can be investigated. Preliminary studies on BZ uptake indicate marked differences between BZ-sensitive and BZ-resistant species.


Assuntos
Doença de Chagas/tratamento farmacológico , Resistência a Medicamentos/genética , Nitroimidazóis/uso terapêutico , Filogenia , Tripanossomicidas/uso terapêutico , Trypanosoma/efeitos dos fármacos , Trypanosoma/genética , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos/genética , Animais , Geografia , Humanos , Proteínas de Membrana Transportadoras/genética , Nitroimidazóis/toxicidade , Nitrorredutases/genética , Tripanossomicidas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA