Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neurochem Res ; 45(3): 620-629, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31782103

RESUMO

Oligodendrocytes are a subtype of glial cells found within the central nervous system (CNS), responsible for the formation and maintenance of specialized myelin membranes which wrap neuronal axons. The development of myelin requires tight coordination for the cell to deliver lipid and protein building blocks to specific myelin segments at the right time. Both internal and external cues control myelination, thus the reception of these signals also requires precise regulation. In late years, a growing body of evidence indicates that oligodendrocytes, like many other cell types, may use extracellular vesicles (EVs) as a medium for transferring information. The field of EV research has expanded rapidly over the past decade, with new contributions that suggest EVs might have direct involvement in communications with neurons and other glial cells to fine tune oligodendroglial function. This functional role of EVs might also be maladaptive, as it has likewise been implicated in the spreading of toxic molecules within the brain during disease. In this review we will discuss the field's current understanding of extracellular vesicle biology within oligodendrocytes, and their contribution to physiologic and pathologic conditions.


Assuntos
Encéfalo/fisiologia , Oligodendroglia/fisiologia , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Membrana Celular/fisiologia , Humanos , Oligodendroglia/metabolismo , Transporte Proteico , Vesículas Transportadoras/metabolismo
2.
Mol Ther ; 26(3): 730-743, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29433936

RESUMO

Analysis of microRNA (miR) expression in the central nervous system white matter of SJL mice infected with the BeAn strain of Theiler's murine encephalomyelitis virus (TMEV) revealed a significant reduction of miR-219, a critical regulator of myelin assembly and repair. Restoration of miR-219 expression by intranasal administration of a synthetic miR-219 mimic before disease onset ameliorates clinical disease, reduces neurogliosis, and partially recovers motor and sensorimotor function by negatively regulating proinflammatory cytokines and virus RNA replication. Moreover, RNA sequencing of host lesions showed that miR-219 significantly downregulated two genes essential for the biosynthetic cholesterol pathway, Cyp51 (lanosterol 14-α-demethylase) and Srebf1 (sterol regulatory element-binding protein-1), and reduced cholesterol biosynthesis in infected mice and rat CG-4 glial precursor cells in culture. The change in cholesterol biosynthesis had both anti-inflammatory and anti-viral effects. Because RNA viruses hijack endoplasmic reticulum double-layered membranes to provide a platform for RNA virus replication and are dependent on endogenous pools of cholesterol, miR-219 interference with cholesterol biosynthesis interfered virus RNA replication. These findings demonstrate that miR-219 inhibits TMEV-induced demyelinating disease through its anti-inflammatory and anti-viral properties.


Assuntos
Infecções por Cardiovirus/complicações , Infecções por Cardiovirus/virologia , Doenças Desmielinizantes/etiologia , Doenças Desmielinizantes/patologia , MicroRNAs/genética , Theilovirus , Carga Viral , Animais , Biomarcadores , Linhagem Celular , Colesterol/metabolismo , Citocinas/metabolismo , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Feminino , Fibrinogênio/metabolismo , Regulação da Expressão Gênica , Mediadores da Inflamação/metabolismo , Metabolismo dos Lipídeos/genética , Camundongos , Microglia/metabolismo , Interferência de RNA , Ratos
3.
Acta Neuropathol ; 130(6): 765-81, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26511623

RESUMO

B cells are implicated in the etiology of multiple sclerosis (MS). Intrathecal IgG synthesis, cerebrospinal fluid (CSF) oligoclonal bands and lesional IgG deposition suggest a role for antibody-mediated pathology. We examined the binding of IgG1 monoclonal recombinant antibodies (rAbs) derived from MS patient CSF expanded B cell clones to central nervous system (CNS) tissue. MS rAbs displaying CNS binding to mouse and human CNS tissue were further tested for their ability to induce complement-mediated tissue injury in ex vivo spinal cord explant cultures. The staining of CNS tissue, primary human astrocytes and human neurons revealed a measurable bias in MS rAb binding to antigens preferentially expressed on astrocytes and neurons. MS rAbs that recognize myelin-enriched antigens were rarely detected. Both myelin-specific and some astrocyte/neuronal-specific MS rAbs caused significant myelin loss and astrocyte activation when applied to spinal cord explant cultures in the presence of complement. Overall, the intrathecal B cell response in multiple sclerosis binds to both glial and neuronal targets and produces demyelination in spinal cord explant cultures implicating intrathecal IgG in MS pathogenesis.


Assuntos
Anticorpos Monoclonais/imunologia , Autoanticorpos/imunologia , Doenças Desmielinizantes/imunologia , Imunoglobulina G/imunologia , Esclerose Múltipla/imunologia , Plasmócitos/imunologia , Medula Espinal/imunologia , Adulto , Animais , Animais não Endogâmicos , Astrócitos/imunologia , Astrócitos/patologia , Linhagem Celular Tumoral , Células Cultivadas , Córtex Cerebral/imunologia , Córtex Cerebral/patologia , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/patologia , Camundongos Endogâmicos C57BL , Bainha de Mielina/imunologia , Bainha de Mielina/patologia , Neurônios/imunologia , Neurônios/patologia , Proteínas Recombinantes/imunologia , Medula Espinal/patologia , Técnicas de Cultura de Tecidos
4.
Transl Stroke Res ; 14(2): 146-159, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35524026

RESUMO

Stroke is a leading cause of death and disability worldwide. Inflammation and microvascular dysfunction have been associated with brain injury and long-term disability after both ischemic and hemorrhagic stroke. Recent studies have suggested a potential role of extracellular vesicles (EVs) as a link underlying these pathogenic processes. EVs are cell-derived particles enveloped by a lipid bilayer, containing proteins, lipids, and nucleic acids. From a functional standpoint, EVs can facilitate intercellular communication, including across the blood-brain barrier (BBB). Recent advances in EV research have shown a preferential release of EVs from specific cell types in the context of stroke, some of which were associated with increased neuroinflammation, microvascular dysfunction, and neuronal cytotoxicity while others offered a degree of neuroprotection. However, one historic challenge in the studies of EVs in stroke is the lack of consistent definitions and methods to analyze EVs, only recently updated in the MISEV2018 guidelines. Given limitations and complexity in the treatment of stroke, particularly delivery of therapeutics across the BBB, increasing attention has been paid towards manipulating EVs as one vehicle that can permit targeted therapeutic delivery to the central nervous system. These discoveries point towards a future where a better understanding of EVs will advance our knowledge of stroke-associated mechanisms of cerebral and systemic injury and contribute to the development of novel treatments. Here, we review the role that EVs play in ischemic and hemorrhagic stroke.


Assuntos
Vesículas Extracelulares , Acidente Vascular Cerebral Hemorrágico , Acidente Vascular Cerebral , Humanos , Sistema Nervoso Central , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/metabolismo , Barreira Hematoencefálica , Vesículas Extracelulares/metabolismo
5.
ASN Neuro ; 14: 17590914221087817, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35300522

RESUMO

Psychosine exerts most of its toxic effects by altering membrane dynamics with increased shedding of extracellular vesicles (EVs). In this study, we discovered that a fraction of psychosine produced in the brain of the Twitcher mouse, a model for Krabbe disease, is associated with secreted EVs. We evaluated the effects of attenuating EV secretion in the Twitcher brain by depleting ceramide production with an inhibitor of neutral sphingomyelinase 2, GW4869. Twitcher mice treated with GW4869 had decreased overall EV levels, reduced EV-associated psychosine and unexpectedly, correlated with increased disease severity. Notably, characterization of well-established, neuroanatomic hallmarks of disease pathology, such as demyelination and inflammatory gliosis, remained essentially unaltered in the brains of GW4869-treated Twitcher mice compared to vehicle-treated Twitcher controls. Further analysis of Twitcher brain pathophysiology is required to understand the mechanism behind early-onset disease severity in GW4869-treated mice. The results herein demonstrate that some pathogenic lipids like psychosine may be secreted using EV pathways. Our results highlight the relevance of this secretory mechanism as a possible contributor to spreading pathogenic lipids in neurological lipidoses.


Assuntos
Vesículas Extracelulares , Leucodistrofia de Células Globoides , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Leucodistrofia de Células Globoides/metabolismo , Leucodistrofia de Células Globoides/patologia , Camundongos , Psicosina/análise , Psicosina/metabolismo , Psicosina/farmacologia , Esfingolipídeos/metabolismo
6.
Sci Rep ; 10(1): 828, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964978

RESUMO

The aging brain is associated with significant changes in physiology that alter the tissue microenvironment of the central nervous system (CNS). In the aged CNS, increased demyelination has been associated with astrocyte hypertrophy and aging has been implicated as a basis for these pathological changes. Aging tissues accumulate chronic cellular stress, which can lead to the development of a pro-inflammatory phenotype that can be associated with cellular senescence. Herein, we provide evidence that astrocytes aged in culture develop a spontaneous pro-inflammatory and senescence-like phenotype. We found that extracellular vesicles (EVs) from young astrocyte were sufficient to convey support for oligodendrocyte differentiation while this support was lost by EVs from aged astrocytes. Importantly, the negative influence of culture age on astrocytes, and their cognate EVs, could be countered by treatment with rapamycin. Comparative proteomic analysis of EVs from young and aged astrocytes revealed peptide repertoires unique to each age. Taken together, these findings provide new information on the contribution of EVs as potent mediators by which astrocytes can extert changing influence in either the disease or aged brain.


Assuntos
Envelhecimento/patologia , Astrócitos/citologia , Astrócitos/fisiologia , Encéfalo/citologia , Encéfalo/patologia , Diferenciação Celular , Senescência Celular , Vesículas Extracelulares/fisiologia , Oligodendroglia/fisiologia , Animais , Células Cultivadas , Camundongos , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA