Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(12)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570725

RESUMO

In a recent paper, the authors discussed the feasibility study of an innovative technique based on the directionality of Cherenkov light produced in a transparent material to improve the signal to noise ratio in muon imaging applications. In particular, the method was proposed to help in the correct identification of incoming muons direction. After the first study by means of Monte Carlo simulations with Geant4, the first reduced scale prototype of such a detector was built and tested at the Department of Physics and Astronomy "E. Majorana" of the University of Catania (Italy). The characterization technique is based on muon tracking by means of the prototype in coincidence with two scintillating tiles. The results of this preliminary test confirm the validity of the technique and stressed the importance to enhance the Cherenkov photons production to get a signal well distinguishable with respect to sensors and electronic noise.

2.
Sensors (Basel) ; 19(5)2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30857136

RESUMO

Muography is an expanding technique for internal structure investigation of large volume object, such as pyramids, volcanoes and also underground cavities. It is based on the attenuation of muon flux through the target in a way similar to the attenuation of X-ray flux through the human body for standard radiography. Muon imaging have to face with high background level, especially compared with the tiny near horizontal muon flux. In this paper the authors propose an innovative technique based on the measurement of Cherenkov radiation by Silicon photo-multipliers arrays to be integrated in a standard telescope for muography applications. Its feasibility study was accomplished by means of Geant4 simulations for the measurement of the directionality of cosmic-ray muons. This technique could be particularly useful for the suppression of background noise due to back-scattered particles whose incoming direction is likely to be wrongly reconstructed. The results obtained during the validation study of the technique principle confirm the ability to distinguish the arrival direction of muons with an efficiency higher than 98% above 1 GeV. In addition, a preliminary study on the tracking performance of the presented technique was introduced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA