Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
BMC Genomics ; 23(1): 776, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443651

RESUMO

BACKGROUND: Plant mitogenomes vary widely in size and genomic architecture. Although hundreds of plant mitogenomes of angiosperm species have already been sequence-characterized, only a few mitogenomes are available from gymnosperms. Silver fir (Abies alba) is an economically important gymnosperm species that is widely distributed in Europe and occupies a large range of environmental conditions. Reference sequences of the nuclear and chloroplast genome of A. alba are available, however, the mitogenome has not yet been assembled and studied. RESULTS: Here, we used paired-end Illumina short reads generated from a single haploid megagametophyte in combination with PacBio long reads from high molecular weight DNA of needles to assemble the first mitogenome sequence of A. alba. Assembly and scaffolding resulted in 11 mitogenome scaffolds, with the largest scaffold being 0.25 Mbp long. Two of the scaffolds displayed a potential circular structure supported by PCR. The total size of the A. alba mitogenome was estimated at 1.43 Mbp, similar to the size (1.33 Mbp) of a draft assembly of the Abies firma mitogenome. In total, 53 distinct genes of known function were annotated in the A. alba mitogenome, comprising 41 protein-coding genes, nine tRNA, and three rRNA genes. The proportion of highly repetitive elements (REs) was 0.168. The mitogenome seems to have a complex and dynamic structure featured by high combinatorial variation, which was specifically confirmed by PCR for the contig with the highest mapping coverage. Comparative analysis of all sequenced mitogenomes of gymnosperms revealed a moderate, but significant positive correlation between mitogenome size and proportion of REs. CONCLUSIONS: The A. alba mitogenome provides a basis for new comparative studies and will allow to answer important structural, phylogenetic and other evolutionary questions. Future long-read sequencing with higher coverage of the A. alba mitogenome will be the key to further resolve its physical structure. The observed positive correlation between mitogenome size and proportion of REs will be further validated once available mitogenomes of gymnosperms would become more numerous. To test whether a higher proportion of REs in a mitogenome leads to an increased recombination and higher structural complexity and variability is a prospective avenue for future research.


Assuntos
Abies , Genoma de Cloroplastos , Genoma Mitocondrial , Traqueófitas , Genoma Mitocondrial/genética , Filogenia , Estudos Prospectivos
2.
Mol Ecol ; 30(16): 3893-3895, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34152056

RESUMO

Many forest tree species have characteristics that make the study of their evolutionary ecology complex. For example, they are long-lived and thus have long generation times, and their often large, complex genomes have hampered establishing genomic resources. One way to tackle this challenge is to access multiple complementary data sources and analytical approaches when attempting to infer patterns of adaptive evolution. In the cover article of this issue of Molecular Ecology, Depardieu et al. (2021) combine large amounts of environmental, genomic, dendrochronological, and gene expression data in a common garden to explore the polygenic basis of drought resistance in white spruce (Picea glauca), a long-lived conifer. They identify candidate genes involved in growth and resistance to extreme drought events and show how multiple data sets may deliver complementary evidence to circumvent the manifold challenges of the research field.


Assuntos
Florestas , Picea , Secas , Ecologia , Picea/genética , Árvores/genética
3.
Glob Chang Biol ; 27(6): 1181-1195, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33345407

RESUMO

The ongoing increase in global temperature affects biodiversity, especially in mountain regions where climate change is exacerbated. As sessile, long-lived organisms, trees are especially challenged in terms of adapting to rapid climate change. Here, we show that low rates of allele frequency shifts in Swiss stone pine (Pinus cembra) occurring near the treeline result in high genomic vulnerability to future climate warming, presumably due to the species' long generation time. Using exome sequencing data from adult and juvenile cohorts in the Swiss Alps, we found an average rate of allele frequency shift of 1.23 × 10-2 /generation (i.e. 40 years) at presumably neutral loci, with similar rates for putatively adaptive loci associated with temperature (0.96 × 10-2 /generation) and precipitation (0.91 × 10-2 /generation). These recent shifts were corroborated by forward-in-time simulations at neutral and adaptive loci. Additionally, in juvenile trees at the colonisation front we detected alleles putatively beneficial under a future warmer and drier climate. Notably, the observed past rate of allele frequency shift in temperature-associated loci was decidedly lower than the estimated average rate of 6.29 × 10-2 /generation needed to match a moderate future climate scenario (RCP4.5). Our findings suggest that species with long generation times may have difficulty keeping up with the rapid climate change occurring in high mountain areas and thus are prone to local extinction in their current main elevation range.


Assuntos
Pinus , Árvores , Biodiversidade , Mudança Climática , Genômica , Árvores/genética
4.
Mol Ecol ; 29(11): 1972-1989, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32395881

RESUMO

It is generally accepted that the spatial distribution of neutral genetic diversity within a species' native range mostly depends on effective population size, demographic history, and geographic position. However, it is unclear how genetic diversity at adaptive loci correlates with geographic peripherality or with habitat suitability within the ecological niche. Using exome-wide genomic data and distribution maps of the Alpine range, we first tested whether geographic peripherality correlates with four measures of population genetic diversity at > 17,000 SNP loci in 24 Alpine populations (480 individuals) of Swiss stone pine (Pinus cembra) from Switzerland. To distinguish between neutral and adaptive SNP sets, we used four approaches (two gene diversity estimates, FST outlier test, and environmental association analysis) that search for signatures of selection. Second, we established ecological niche models for P. cembra in the study range and investigated how habitat suitability correlates with genetic diversity at neutral and adaptive loci. All estimates of neutral genetic diversity decreased with geographic peripherality, but were uncorrelated with habitat suitability. However, heterozygosity (He ) at adaptive loci based on Tajima's D declined significantly with increasingly suitable conditions. No other diversity estimates at adaptive loci were correlated with habitat suitability. Our findings suggest that populations at the edge of a species' geographic distribution harbour limited neutral genetic diversity due to demographic properties. Moreover, we argue that populations from suitable habitats went through strong selection processes, are thus well adapted to local conditions, and therefore exhibit reduced genetic diversity at adaptive loci compared to populations at niche margins.


Assuntos
Ecossistema , Genética Populacional , Pinus , Adaptação Biológica , Variação Genética , Pinus/genética , Seleção Genética , Suíça
5.
Mol Ecol ; 29(22): 4350-4365, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32969558

RESUMO

It has long been discussed to what extent related species develop similar genetic mechanisms to adapt to similar environments. Most studies documenting such convergence have either used different lineages within species or surveyed only a limited portion of the genome. Here, we investigated whether similar or different sets of orthologous genes were involved in genetic adaptation of natural populations of three related plant species to similar environmental gradients in the Alps. We used whole-genome pooled population sequencing to study genome-wide SNP variation in 18 natural populations of three Brassicaceae (Arabis alpina, Arabidopsis halleri, and Cardamine resedifolia) from the Swiss Alps. We first de novo assembled draft reference genomes for all three species. We then ran population and landscape genomic analyses with ~3 million SNPs per species to look for shared genomic signatures of selection and adaptation in response to similar environmental gradients acting on these species. Genes with a signature of convergent adaptation were found at significantly higher numbers than expected by chance. The most closely related species pair showed the highest relative over-representation of shared adaptation signatures. Moreover, the identified genes of convergent adaptation were enriched for nonsynonymous mutations, suggesting functional relevance of these genes, even though many of the identified candidate genes have hitherto unknown or poorly described functions based on comparison with Arabidopsis thaliana. We conclude that adaptation to heterogeneous Alpine environments in related species is partly driven by convergent evolution, but that most of the genomic signatures of adaptation remain species-specific.


Assuntos
Adaptação Fisiológica , Arabis , Brassicaceae , Cardamine , Adaptação Fisiológica/genética , Brassicaceae/genética , Genômica
6.
Plant Cell Environ ; 43(5): 1288-1299, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31990067

RESUMO

Long generation times have been suggested to hamper rapid genetic adaptation of organisms to changing environmental conditions. We examined if environmental memory of the parental Scots pines (Pinus sylvestris L.) drive offspring survival and growth. We used seeds from trees growing under naturally dry conditions (control), irrigated trees (irrigated from 2003 to 2016), and formerly irrigated trees ("irrigation stop"; irrigated from 2003-2013; control condition since 2014). We performed two experiments, one under controlled greenhouse conditions and one at the experimental field site. In the greenhouse, the offspring from control trees exposed regularly to drought were more tolerant to hot-drought conditions than the offspring from irrigated trees and showed lower mortality even though there was no genetic difference. However, under optimal conditions (high water supply and full sunlight), these offspring showed lower growth and were outperformed by the offspring of the irrigated trees. This different offspring growth, with the offspring of the "irrigation-stop" trees showing intermediate responses, points to the important role of transgenerational memory for the long-term acclimation of trees. Such memory effects, however, may be overridden by climatic extremes during germination and early growth stages such as the European 2018 mega-drought that impacted our field experiment.


Assuntos
Adaptação Fisiológica/fisiologia , Pinus sylvestris/fisiologia , Aclimatação/fisiologia , Meio Ambiente , Germinação/fisiologia , Sementes/fisiologia , Estresse Fisiológico
7.
Ann Bot ; 125(4): 663-676, 2020 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-31912148

RESUMO

BACKGROUND AND AIMS: Hybridization and introgression play an important role in the evolution and diversification of plants. To assess the degree of past and current hybridization, the level of genetic admixture in populations needs to be investigated. Ongoing hybridization and blurred species separation have made it challenging to assign European white oak taxa based on leaf morphology and/or genetic markers and to assess the level of admixture. Therefore, there is a need for powerful markers that differentiate between taxa. Here, we established a condensed set of single-nucleotide polymorphism (SNP) markers to reliably differentiate between the three most common oak species in temperate European forests (Quercus robur, Q. petraea, Q. pubescens) and to assess the degree of admixture in a large set of selected Swiss populations. METHODS: A training set of 194 presumably pure reference samples from Switzerland and Europe was used to assign 633 test individuals with two different approaches (population genetic-based/Bayesian vs. assumption-free/discriminative classifier) using 58 selected SNPs from coding regions. Admixture was calculated at the individual and population level with the Shannon diversity index based on individual assignment probabilities. KEY RESULTS: Depending on the approach, 97.5-100 % of training individuals were assigned correctly, and additional analyses showed that the established SNP set could be further reduced while maintaining its discriminatory power. The two assignment approaches showed high overlap (99 %) in assigning training individuals and slightly less overlap in test individuals (84 %). Levels of admixture varied widely among populations. Mixed stands of Q. petraea and Q. pubescens revealed much higher degrees of admixture than mixed stands of the other two taxon pairs, accentuating high levels of gene flow between these two taxa in Switzerland. CONCLUSIONS: Our set of SNPs warrants reliable taxon discrimination with great potential for further applications. We show that the three European white oak taxa have largely retained their species integrity in Switzerland despite high levels of admixture.


Assuntos
Quercus , Teorema de Bayes , Europa (Continente) , Polimorfismo de Nucleotídeo Único , Suíça
8.
Mol Ecol ; 27(3): 606-612, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29385652

RESUMO

Over the last decade, the genomic revolution has offered the possibility to generate tremendous amounts of data that contain valuable information on the genetic basis of phenotypic traits, such as those linked to human diseases or those that allow for species to adapt to a changing environment. Most ecologically relevant traits are controlled by a large number of genes with small individual effects on trait variation, but that are connected with one another through complex developmental, metabolic and biochemical networks. As a result, it has recently been suggested that most adaptation events in natural populations are reached via correlated changes at multiple genes at a time, for which the name polygenic adaptation has been coined. The current challenge is to develop methods to extract the relevant information from genomic data to detect the signature of polygenic evolutionary change. The symposium entitled "Detecting the Genomic Signal of Polygenic Adaptation and the Role of Epistasis in Evolution" held in 2017 at the University of Zürich aimed at reviewing our current state of knowledge. In this review, we use the talks of the invited speakers to summarize some of the most recent developments in this field.


Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Epistasia Genética , Genoma , Herança Multifatorial/genética , Animais , Congressos como Assunto , Humanos , Seleção Genética
9.
BMC Genomics ; 18(1): 69, 2017 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-28077077

RESUMO

BACKGROUND: Microsatellite markers are widely used for estimating genetic diversity within and differentiation among populations. However, it has rarely been tested whether such estimates are useful proxies for genome-wide patterns of variation and differentiation. Here, we compared microsatellite variation with genome-wide single nucleotide polymorphisms (SNPs) to assess and quantify potential marker-specific biases and derive recommendations for future studies. Overall, we genotyped 180 Arabidopsis halleri individuals from nine populations using 20 microsatellite markers. Twelve of these markers were originally developed for Arabidopsis thaliana (cross-species markers) and eight for A. halleri (species-specific markers). We further characterized 2 million SNPs across the genome with a pooled whole-genome re-sequencing approach (Pool-Seq). RESULTS: Our analyses revealed that estimates of genetic diversity and differentiation derived from cross-species and species-specific microsatellites differed substantially and that expected microsatellite heterozygosity (SSR-H e) was not significantly correlated with genome-wide SNP diversity estimates (SNP-H e and θ Watterson) in A. halleri. Instead, microsatellite allelic richness (A r) was a better proxy for genome-wide SNP diversity. Estimates of genetic differentiation among populations (F ST) based on both marker types were correlated, but microsatellite-based estimates were significantly larger than those from SNPs. Possible causes include the limited number of microsatellite markers used, marker ascertainment bias, as well as the high variance in microsatellite-derived estimates. In contrast, genome-wide SNP data provided unbiased estimates of genetic diversity independent of whether genome- or only exome-wide SNPs were used. Further, we inferred that a few thousand random SNPs are sufficient to reliably estimate genome-wide diversity and to distinguish among populations differing in genetic variation. CONCLUSIONS: We recommend that future analyses of genetic diversity within and differentiation among populations use randomly selected high-throughput sequencing-based SNP data to draw conclusions on genome-wide diversity patterns. In species comparable to A. halleri, a few thousand SNPs are sufficient to achieve this goal.


Assuntos
Arabidopsis/genética , Genômica , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único , Genoma de Planta/genética
10.
Mol Ecol ; 25(23): 5907-5924, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27759957

RESUMO

Testing how populations are locally adapted and predicting their response to their future environment is of key importance in view of climate change. Landscape genomics is a powerful approach to investigate genes and environmental factors involved in local adaptation. In a pooled amplicon sequencing approach of 94 genes in 71 populations, we tested whether >3500 single nucleotide polymorphisms (SNPs) in the three most common oak species in Switzerland (Quercus petraea, Q. pubescens, Q. robur) show an association with abiotic factors related to local topography, historical climate and soil characteristics. In the analysis including all species, the most frequently associated environmental factors were those best describing the habitats of the species. In the species-specific analyses, the most important environmental factors and associated SNPs greatly differed among species. However, we identified one SNP and seven genes that were associated with the same environmental factor across all species. We finally used regressions of allele frequencies of the most strongly associated SNPs along environmental gradients to predict the risk of nonadaptedness (RONA), which represents the average change in allele frequency at climate-associated loci theoretically required to match future climatic conditions. RONA is considerable for some populations and species (up to 48% in single populations) and strongly differs among species. Given the long generation time of oaks, some of the required allele frequency changes might not be realistic to achieve based on standing genetic variation. Hence, future adaptedness requires gene flow or planting of individuals carrying beneficial alleles from habitats currently matching future climatic conditions.


Assuntos
Adaptação Fisiológica/genética , Mudança Climática , Polimorfismo de Nucleotídeo Único , Quercus/genética , Frequência do Gene , Genes de Plantas , Genética Populacional , Suíça
11.
Mol Ecol ; 24(17): 4348-70, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26184487

RESUMO

Landscape genomics is an emerging research field that aims to identify the environmental factors that shape adaptive genetic variation and the gene variants that drive local adaptation. Its development has been facilitated by next-generation sequencing, which allows for screening thousands to millions of single nucleotide polymorphisms in many individuals and populations at reasonable costs. In parallel, data sets describing environmental factors have greatly improved and increasingly become publicly accessible. Accordingly, numerous analytical methods for environmental association studies have been developed. Environmental association analysis identifies genetic variants associated with particular environmental factors and has the potential to uncover adaptive patterns that are not discovered by traditional tests for the detection of outlier loci based on population genetic differentiation. We review methods for conducting environmental association analysis including categorical tests, logistic regressions, matrix correlations, general linear models and mixed effects models. We discuss the advantages and disadvantages of different approaches, provide a list of dedicated software packages and their specific properties, and stress the importance of incorporating neutral genetic structure in the analysis. We also touch on additional important aspects such as sampling design, environmental data preparation, pooled and reduced-representation sequencing, candidate-gene approaches, linearity of allele-environment associations and the combination of environmental association analyses with traditional outlier detection tests. We conclude by summarizing expected future directions in the field, such as the extension of statistical approaches, environmental association analysis for ecological gene annotation, and the need for replication and post hoc validation studies.


Assuntos
Meio Ambiente , Genética Populacional/métodos , Genômica/métodos , Modelos Genéticos , Adaptação Fisiológica/genética , Alelos , Frequência do Gene , Interação Gene-Ambiente , Genótipo , Modelos Lineares , Modelos Logísticos , Fenótipo , Software , Estatística como Assunto
12.
Nat Ecol Evol ; 8(7): 1224-1232, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38789640

RESUMO

Genetic and genomic data are collected for a vast array of scientific and applied purposes. Despite mandates for public archiving, data are typically used only by the generating authors. The reuse of genetic and genomic datasets remains uncommon because it is difficult, if not impossible, due to non-standard archiving practices and lack of contextual metadata. But as the new field of macrogenetics is demonstrating, if genetic data and their metadata were more accessible and FAIR (findable, accessible, interoperable and reusable) compliant, they could be reused for many additional purposes. We discuss the main challenges with existing genetic and genomic data archives, and suggest best practices for archiving genetic and genomic data. Recognizing that this is a longstanding issue due to little formal data management training within the fields of ecology and evolution, we highlight steps that research institutions and publishers could take to improve data archiving.


Assuntos
Genômica , Bases de Dados Genéticas , Gerenciamento de Dados , Metadados
13.
Mol Ecol ; 22(22): 5594-607, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24102711

RESUMO

Natural genetic variation is essential for the adaptation of organisms to their local environment and to changing environmental conditions. Here, we examine genomewide patterns of nucleotide variation in natural populations of the outcrossing herb Arabidopsis halleri and associations with climatic variation among populations in the Alps. Using a pooled population sequencing (Pool-Seq) approach, we discovered more than two million SNPs in five natural populations and identified highly differentiated genomic regions and SNPs using FST -based analyses. We tested only the most strongly differentiated SNPs for associations with a nonredundant set of environmental factors using partial Mantel tests to identify topo-climatic factors that may underlie the observed footprints of selection. Possible functions of genes showing signatures of selection were identified by Gene Ontology analysis. We found 175 genes to be highly associated with one or more of the five tested topo-climatic factors. Of these, 23.4% had unknown functions. Genetic variation in four candidate genes was strongly associated with site water balance and solar radiation, and functional annotations were congruent with these environmental factors. Our results provide a genomewide perspective on the distribution of adaptive genetic variation in natural plant populations from a highly diverse and heterogeneous alpine environment.


Assuntos
Adaptação Fisiológica/genética , Arabidopsis/genética , Clima , Genética Populacional , Seleção Genética , DNA de Plantas/genética , Ecossistema , Ontologia Genética , Genes de Plantas , Genômica/métodos , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Suíça
14.
J Anim Ecol ; 82(1): 191-200, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22985060

RESUMO

In nature, parasites commonly share hosts with other conspecific parasite genotypes. While adult parasites typically show aggregated distribution in their final hosts, aggregation of clonal parasite genotypes in intermediate hosts, such as those of trematodes in molluscs, is not generally known. However, infection of a host by multiple parasite genotypes has significant implications for evolution of virulence and host-parasite coevolution. Aggregated distribution of the clonal stages can increase host mortality and reduce larval output of each infecting genotype through interclonal competition, and therefore have significant implications for parasite epidemiology. The aim of this study was (i) to find out how common multiple genotype infections (MGIs) are in aquatic snails serving as intermediate hosts for different trematode species; (ii) to find out whether the prevalence of infection could be used to predict MGI frequencies and (iii) to use the relationship to infer whether MGIs aggregate in molluscan hosts. We determined the prevalence of trematode (Diplostomum pseudospathaceum) infections and the frequency of MGIs in snail (Lymnaea stagnalis) host populations as well as compiled corresponding literature data from a range of snail-trematode systems. We used Bayesian simulations to explore the relationship between prevalence of infection and MGI frequency in these data, and tested whether genotypes aggregate in snails by comparing the simulated relations with null model (Poisson and demographic Poisson) expectations. Our results show that MGIs are common in aquatic snails with up to 90% of the infected snails carrying MGIs. Parasite prevalence is a good predictor of MGI frequencies at a range of prevailing natural prevalences of infection (0-50%). The frequency of MGIs was higher than expected by both null models, indicating parasite aggregation at genotype level. These findings are in sharp contrast with the absence of multiple infections in snails at level of trematode species, suggesting that co-infections by multiple species and multiple genotypes of one species are controlled by different biological processes. Aggregation of MGIs in snail hosts appears to be widespread across different snail-trematode systems.


Assuntos
Genótipo , Lymnaea/parasitologia , Trematódeos/genética , Trematódeos/fisiologia , Animais , Teorema de Bayes , Interações Hospedeiro-Parasita , Repetições de Microssatélites
15.
Trends Ecol Evol ; 38(3): 261-274, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36402651

RESUMO

Detecting the extrinsic selective pressures shaping genomic variation is critical for a better understanding of adaptation and for forecasting evolutionary responses of natural populations to changing environmental conditions. With increasing availability of geo-referenced environmental data, landscape genomics provides unprecedented insights into how genomic variation and underlying gene functions affect traits potentially under selection. Yet, the robustness of genotype-environment associations used in landscape genomics remains tempered due to various limitations, including the characteristics of environmental data used, sampling designs employed, and statistical frameworks applied. Here, we argue that using complementary or new environmental data sources and well-informed sampling designs may help improve the detection of selective pressures underlying patterns of local adaptation in various organisms and environments.


Assuntos
Genética Populacional , Genômica , Genótipo , Adaptação Fisiológica/genética , Fenótipo , Seleção Genética
16.
Am Nat ; 180(3): 306-15, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22854074

RESUMO

Understanding genetic specificity in factors determining the outcome of host-parasite interactions is especially important as it contributes to parasite epidemiology, virulence, and maintenance of genetic variation. Such specificity, however, is still generally poorly understood. We examined genetic specificity in interactions among coinfecting parasites. In natural populations, individual hosts are often simultaneously infected by multiple parasite species and genotypes that interact. Such interactions could maintain genetic variation in parasite populations if they are genetically specific so that the relative fitness of parasite genotypes varies across host individuals depending on (1) the presence/absence of coinfections and/or (2) the genetic composition of the coinfecting parasite community. We tested these predictions using clones of fish eye flukes Diplostomum pseudospathaceum and Diplostomum gasterostei. We found that interactions among parasites had a strong genetic basis and that this modified genetic variation in infection success of D. pseudospathaceum between single and multiple infections as well as across multiply infected host individuals depending on the genetic identity of the coinfecting D. gasterostei. The relative magnitude of these effects, however, depended on the exposure dose, suggesting that ecological factors can modify genetic interactions between parasites.


Assuntos
Coinfecção , Especificidade de Hospedeiro/genética , Trematódeos/genética , Animais , Variação Genética , Genótipo , Oncorhynchus mykiss/parasitologia
17.
Proc Biol Sci ; 279(1726): 171-6, 2012 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21632629

RESUMO

Co-infecting parasite genotypes typically compete for host resources limiting their fitness. The intensity of such competition depends on whether parasites are reproducing in a host, or using it primarily as a transmission vehicle while not multiplying in host tissues (referred to as 'competition hypothesis'). Alternatively, simultaneous attack and co-infection by several parasite genotypes might facilitate parasite infection because such a diverse attack could present an additional challenge to host immune defence (referred to as 'facilitation hypothesis'). We tested the competition hypothesis by comparing the production of transmission stages (cercariae) from snails infected with one or two genotypes of the trematode Diplostomum pseudospathaceum. We found that cercarial production did not differ between the two groups of snails, suggesting lower per genotype production in double infections, and competition for host resources. Second, we tested the facilitation hypothesis by comparing parasite infection success on fishes (proportion of parasites establishing in the host) using cercariae originating from single-infected snails, double-infected snails and artificial mixtures of the single genotypes. In both cases, we found higher infection success when fishes were challenged with two parasite genotypes instead of one, supporting the facilitation hypothesis. Our results suggest that constraints defining the success of multiple genotype infections in parasites with multiple host life cycles include both between-genotype resource competition in the host and performance of host immune defences against a diverse parasite challenge.


Assuntos
Genótipo , Lymnaea/parasitologia , Oncorhynchus mykiss/parasitologia , Trematódeos/genética , Infecções por Trematódeos/veterinária , Análise de Variância , Animais , Cercárias/genética , Cercárias/crescimento & desenvolvimento , Comportamento Competitivo , Finlândia , Variação Genética , Interações Hospedeiro-Parasita , Reação em Cadeia da Polimerase , Reprodução , Trematódeos/crescimento & desenvolvimento , Infecções por Trematódeos/parasitologia
18.
Tree Genet Genomes ; 18(2): 12, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35210985

RESUMO

Rapid human-induced environmental changes like climate warming represent a challenge for forest ecosystems. Due to their biological complexity and the long generation time of their keystone tree species, genetic adaptation in these ecosystems might not be fast enough to keep track with conditions changing at such a fast pace. The study of adaptation to environmental change and its genetic mechanisms is therefore key for ensuring a sustainable support and management of forests. The 4-day conference of the European Research Group EvolTree (https://www.evoltree.eu) on the topic of "Genomics and Adaptation in Forest Ecosystems" brought together over 130 scientists to present and discuss the latest developments and findings in forest evolutionary research. Genomic studies in forest trees have long been hampered by the lack of high-quality genomics resources and affordable genotyping methods. This has dramatically changed in the last few years; the conference impressively showed how such tools are now being applied to study past demography, adaptation and interactions with associated organisms. Moreover, genomic studies are now finally also entering the world of conservation and forest management, for example by measuring the value or cost of interspecific hybridization and introgression, assessing the vulnerability of species and populations to future change, or accurately delineating evolutionary significant units. The newly launched conference series of EvolTree will hopefully play a key role in the exchange and synthesis of such important investigations. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11295-022-01542-1.

19.
Evol Appl ; 14(5): 1202-1212, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34025760

RESUMO

In nature conservation, there is keen interest in predicting how populations will respond to environmental changes such as climate change. These predictions can help determine whether a population can be self-sustaining under future alterations of its habitat or whether it may require human intervention such as protection, restoration, or assisted migration. An increasingly popular approach in this respect is the concept of genomic offset, which combines genomic and environmental data from different time points and/or locations to assess the degree of possible maladaptation to new environmental conditions. Here, we argue that the concept of genomic offset holds great potential, but an exploration of its risks and limitations is needed to use it for recommendations in conservation or assisted migration. After briefly describing the concept, we list important issues to consider (e.g., statistical frameworks, population genetic structure, migration, independent evidence) when using genomic offset or developing these methods further. We conclude that genomic offset is an area of development that still lacks some important features and should be used in combination with other approaches to inform conservation measures.

20.
Sci Total Environ ; 779: 146393, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34030256

RESUMO

Warmer climate and more frequent extreme droughts will pose major threats to forest ecosystems. Past demography processes due to post-glacial recolonization and adaptation to local environmental conditions are among the main contributors to genetic differentiation processes among provenances. Assessing the intra-specific variability of tree growth responses to such changes is crucial to explore a species' potential to cope with climate warming. We combined growth-related traits derived from tree-ring width series with neutral genetic information of 18 European provenances of silver fir (Abies alba Mill.) growing in two common garden experiments in Switzerland. Analyses based on neutral single nucleotide polymorphisms revealed that the studied provenances grouped into three longitudinal clusters. These three genetic clusters showed differences in growth traits (height and DBH), with the provenances from the eastern cluster exhibiting the highest growth. The Pyrenees cluster showed significantly lower recovery and resilience to the extreme drought of 2003 as well as lower values of growth autocorrelation. QST-FST and correlation analyses with climate of provenance origin suggest that the differences among provenances found in some traits result from natural selection. Our study suggests that the last post-glacial re-colonization and natural selection are the major drivers explaining the intra-specific variability in growth of silver fir across Europe. These findings highlight the importance of combining dendroecology and genetic analyses on fitness-related traits to assess the potential of a species to cope with global environmental change and provide insights to support assisted gene flow to ensure the persistence of the species in European forests.


Assuntos
Mudança Climática , Ecossistema , Secas , Europa (Continente) , Seleção Genética , Suíça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA