RESUMO
Aqueous Zn-ion batteries (AZIBs) are one of the most promising large-scale energy storage devices due to the excellent characteristics of zinc metal anode, including high theoretical capacity, high safety and low cost. Nevertheless, the large-scale applications of AZIBs are mainly limited by uncontrollable Zn deposition and notorious Zn dendritic growth, resulting in low plating/stripping coulombic efficiency and unsatisfactory cyclic stability. To address these issues, herein, a carbon foam (CF) was fabricated via melamine-foam carbonization as a scaffold for a dendrite-free and stable Zn anode. Results showed that the abundant zincophilicity functional groups and conductive three-dimensional network of this carbon foam could effectively regulate Zn deposition and alleviate the Zn anode's volume expansion during cycling. Consequently, the symmetric cell with CF@Zn electrode exhibited lower voltage hysteresis (32.4 mV) and longer cycling performance (750 h) than the pure Zn symmetric cell at 1 mA cm-2 and 1 mAh cm-2. Furthermore, the full battery coupling CF@Zn anode with MnO2 cathode can exhibit a higher initial capacity and better cyclic performance than the one with the bare Zn anode. This work brings a new idea for the design of three-dimensional (3D) current collectors for stable zinc metal anode toward high-performance AZIBs.
Assuntos
Compostos de Manganês , Zinco , Óxidos , Metais , Carbono , EletrodosRESUMO
Despite having ultra-high theoretical specific capacity and theoretical energy density, lithium-sulfur (Li-S) batteries suffer from their low Coulombic efficiency and poor lifespan, and the commercial application of Li-S batteries is seriously hampered by the severe "shuttle effect" of lithium polysulfides (LiPSs) and the large volume expansion ratio of the sulfur electrode during cycling. Designing functional hosts for sulfur cathodes is one of the most effective ways to immobilize the LiPSs and improve the electrochemical performance of a Li-S battery. In this work, a polypyrrole (PPy)-coated anatase/bronze TiO2 (TAB) heterostructure was successfully prepared and used as a sulfur host. Results showed that the porous TAB could physically adsorb and chemically interact with LiPSs during charging and discharging processes, inhibiting the LiPSs' shuttle effect, and the TAB's heterostructure and PPy conductive layer are conducive to the rapid transport of Li+ and improve the conductivity of the electrode. By benefitting from these merits, Li-S batteries with TAB@S/PPy electrodes could deliver a high initial capacity of 1250.4 mAh g-1 at 0.1 C and show an excellent cycling stability (the average capacity decay rate was 0.042% per cycle after 1000 cycles at 1 C). This work brings a new idea for the design of functional sulfur cathodes for high-performance Li-S battery.
Assuntos
Lítio , Polímeros , Pirróis , EnxofreRESUMO
As an important potential candidate for large-scale energy storage, rechargeable zinc metal batteries have become a research hotspot. Zn metal anodes are an extremely crucial component of rechargeable Zn metal batteries. However, the Zn dendrites, the evolution of hydrogen and side reactions on the surface of the Zn metal anodes severely hinder its commercial use. Here, we report a modified Zn metal anode with a layer of nitrogen-defective graphitic carbon nitride (NDCN) nanosheets coated onto a commercial Zn foil by a simple spraying method. The NDCN coating on the anode's surface not only provides zincophilic sites, but also drives the deposition of zinc with a particular crystallographic orientation. At the same time, the formation of zinc dendrites and the evolution of hydrogen were suppressed, which enhanced the reversibility of the anode. Thus, the symmetric cells with the NDCN-protected zinc foil (NDCN@Zn) electrodes remained stable for 2000 h at a current density of 5 mA cm-2. More importantly, the long-term cycling performance of the full cell tested at 1 A g-1 retained approximately 88 % of its capacity even after 2300 cycles. This simple but effective method will provide a reference for future studies on protecting the anodes of zinc metal batteries.
RESUMO
An innovative two-step method perfectly prepared TCLs with different thicknesses, and then the TNA films based on TCLs were successfully prepared. The effects of different thicknesses of TCLs on the morphology and photoelectrochemical performance of TNA films were investigated. The results indicated that TCLs with appropriate thickness could effectively improve the morphology and photoelectrochemical performance of TNA films. Compared with the TNA films based on TCL5, TCL10 and TCL30, the TNA film based on TCL20 exhibited more ideal and comprehensive photoelectrochemical performance. Moreover, dye-sensitized solar cells (DSSCs) based on this TNA film achieved the highest J sc (10.2054 mA cm-2), V oc (0.5737 V), PCE (3.3%) and P out (3.31 mW cm-2).
RESUMO
The band structure, the density of states and optical absorption properties of Cu-doped ZnO were studied by the first-principles generalized gradient approximation plane-wave pseudopotential method based on density functional theory. For the Zn1-xCuxO (x = 0, x = 0.0278, x = 0.0417) original structure, geometric optimization and energy calculations were performed and compared with experimental results. With increasing Cu concentration, the band gap of the Zn1-xCuxO decreased due to the shift of the conduction band. Since the impurity level was introduced after Cu doping, the conduction band was moved downwards. Additionally, it was shown that the insertion of a Cu atom leads to a red shift of the optical absorption edge, which was consistent with the experimental results.
RESUMO
Nowadays, wearable energy storage devices have been growing rapidly, but flexible systems with both excellent cycling stability and decent flexibility are still challenging. In this work, a flexible all-solid-state NH4NiPO4·H2O//graphene supercapacitor with remarkable performance was successfully assembled. When cycled at a current density of 5 mA cm-2, the device delivered 121 mF cm-2, and showed good cycling stability after 3,000 cycles. Moreover, the all-solid-state NH4NiPO4·H2O//graphene supercapacitor also exhibit high mechanical flexibility with well-maintained specific capacitance, even under bending to arbitrary angles (up to 180°) and different weights (up to 50 g).
RESUMO
Lithium-ion batteries (LIBs) have been widely used in the fields of smart phones, electric vehicles, and smart grids. With its opened Aurivillius structure, tungstate antimony oxide (Sb2WO6, SWO), constituted of {Sb2O2}2n+ and {WO4}2n-, is rarely investigated as an anode for lithium-ion batteries. In this work, Sb2WO6 with nanosheets morphology was successfully synthesized using a simple microwave hydrothermal method and systematically studied as an anode for lithium-ion batteries. The optimal SWO (SWO-60) exhibits a high specific discharge capacity and good rate capability. The good electrochemical performance could be ascribed to mesoporous nanosheets morphology, which is favorable for the penetration of the electrolyte and charge transportation. The results show that this nanostructured SWO is a promising anode material for LIBs.
RESUMO
The impacts of rolling temperature on phase transformations and mechanical properties were investigated for AISI 316LN austenitic stainless steel subjected to rolling at cryogenic and room temperatures. The microstructure evolution and the mechanical properties were investigated by means of optical, scanning, and transmission electron microscopy, an X-ray diffractometer, microhardness tester, and tensile testing system. Results showed that strain-induced martensitic transformation occurred at both deformation temperatures, and the martensite volume fraction increased with the deformation. Compared with room temperature rolling, cryorolling substantially enhanced the martensite transformation rate. At 50% deformation, it yielded the same fraction as the room temperature counterpart at 90% strain, while at 70%, it totally transformed the austenite to martensite. The strength and hardness of the stainless steel increased remarkably with the deformation, but the corresponding elongation decreased dramatically. Meanwhile, the tensile fracture morphology changed from a typical ductile rupture to a mixture of ductile and quasi-cleavage fracture. The phase transformation and deformation mechanisms differed at two temperatures, with the martensite deformation contributing to the former, and austenite deformation to the latter. Orientations between the transformed martensite and its parent phase followed the Kâ»S (Kurdjumovâ»Sachs) relationship.
RESUMO
Due to the cost-effectiveness of sodium source, sodium-ion batteries (SIBs) have attracted considerable attention. However, SIBs still have some challenges in competing with lithium-ion batteries for practical applications. Particularly, the high rate capability and cycling stability are posing big problems for SIBs. Here, nitrogen-doped carbon-coated WS2 nanosheets (WS2/NC) were successfully synthesized by a high-temperature solution method, followed by carbonization of polypyrrole. When used as anode electrodes for SIBs, WS2/NC composite exhibited high-rate capacity at 386 and 238.1 mAh g-1 at 50 and 2,000 mA g-1, respectively. Furthermore, even after 400 cycle, the composite electrode could still deliver a capacity of ~180.1 mAh g-1 at 1,000 mA g-1, corresponding to a capacity loss of 0.09% per cycle. The excellent electrochemical performance could be attributed to the synergistic effect of the highly conductive nature of the nitrogen-doped carbon-coating and WS2 nanosheets. Results showed that the WS2/NC nanosheets are promising electrode materials for SIBs application.