Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 386: 114813, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31715269

RESUMO

Pristimerin, a triterpenoid, has exhibited potential anti-inflammatory and anti-tumor activities. Nevertheless, the role and mechanism of pristimerin in intestinal inflammation and colon cancer require further investigation. Here, we found that pristimerin protected mice from dextran sulfate sodium (DSS)-induced colitis, restoring epithelial damage and reducing tissue inflammation and inflammatory cell infiltration. In addition, pristimerin dramatically reduced the number and size of the tumors in a azoxymethane (AOM)/DSS-induced colitis-associated colorectal cancer (CAC) model. Furthermore, we found that pristimerin suppressed Wnt/ß-catenin signaling by RNA-Seq. Pristimerin inhibited Wnt/ß-catenin signaling via activation of GSK3ß, thereby suppressing Wnt target gene expression in colon cancer HCT116 and HT-29 cells. In HCT116 colon cancer xenografts and APCmin/+ mice, which undergo spontaneous intestinal tumorigenesis, administration of pristimerin reduced the tumor progression and decreased the expression of phosphorylated GSK3ß Ser 9, ß-catenin, cyclin D1 and c-Myc. These results suggest that pristimerin is a potent agent for preventing colon inflammation and carcinogenesis.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Inflamação/tratamento farmacológico , Triterpenos/uso terapêutico , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Células HCT116 , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Triterpenos Pentacíclicos
2.
Chem Biodivers ; 16(8): e1900325, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31290253

RESUMO

Chronic myeloid leukemia (CML) is a lethal malignancy, and the progress toward long-term survival has stagnated in recent decades. Pristimerin, a quinone methide triterpenoid isolated from the Celastraceae and Hippocrateaceae families, is well-known to exert potential anticancer activities. In this study, we investigated the effects and the mechanisms of action on CML. We found that pristimerin inhibited cell proliferation of K562 CML cells by causing G1 phase arrest. Furthermore, we demonstrated that pristimerin triggered autophagy and apoptosis. Intriguingly, pristimerin-induced cell death was restored by an autophagy inhibitor, suggesting that autophagy is cross-linked with pristimerin-induced apoptosis. Further studies revealed that pristimerin could produce excessive reactive oxygen species (ROS), which then induce JNK activation. These findings provide clear evidence that pristimerin might be clinical benefit to patients with CML.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Triterpenos/farmacologia , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Células K562 , Triterpenos Pentacíclicos , Espécies Reativas de Oxigênio/metabolismo , Triterpenos/química
3.
Cell Death Discov ; 5: 125, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396402

RESUMO

Breast cancer is the most common malignant tumor in women, and progress toward long-term survival has stagnated. Pristimerin, a natural quinonemethide triterpenoid, exhibits potential anti-tumor effects on various cancers. However, the underlying mechanism remains poorly understood. In this study, we found that pristimerin reduced the viability of breast cancer cells in vitro and the growth of xenografts in vivo, and these reductions were accompanied by thioredoxin-1 (Trx-1) inhibition and ASK1 and JNK activation. The results showed that pristimerin inhibited cell cycle progression and triggered cell apoptosis and autophagy. Furthermore, we found that the generation of reactive oxygen species (ROS) was a critical mediator in pristimerin-induced cell death. Enhanced ROS generation by pristimerin activated the ASK1/JNK signaling pathway. Inhibition of ROS with N-acetyl cysteine (NAC) significantly decreased pristimerin-induced cell death by inhibiting the phosphorylation of ASK1 and JNK. Taken together, these results suggest a critical role for the ROS/ASK1/JNK pathway in the anticancer activity of pristimerin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA