Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cancer Control ; 30: 10732748231175256, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37148308

RESUMO

PURPOSE: Identifying actionable oncogenic mutations have changed the therapeutic landscape in different types of tumors. This study investigated the utility of comprehensive genomic profiling (CGP), a hybrid capture-based next-generation sequencing (NGS) assay, in clinical practice in a developing country. METHODS: In this retrospective cohort study, CGP was performed on clinical samples from patients with different solid tumors recruited between December 2016 and November 2020, using hybrid capture-based genomic profiling, at the individual treating physicians' request in the clinical care for therapy decisions. Kaplan-Meier survival curves were estimated to characterize the time-to-event variables. RESULTS: Patients median age was 61 years (range: 14-87 years), and 64.7% were female. The most common histological diagnosis was lung primary tumors, with 90 patients corresponding to 52.9% of the samples (95% CI 45.4-60.4%). Actionable mutations with FDA-approved medications for specific alterations correspondent to tumoral histology were identified in 58 cases (46.4%), whereas other alterations were detected in 47 different samples (37.6%). The median overall survival was 15.5 months (95% CI 11.7 months-NR). Patients who were subjected to genomic evaluation at diagnosis reached a median overall survival of 18.3 months (95% CI 14.9 months-NR) compared to 14.1 months (95% CI 11.1 months-NR) in patients who obtained genomic evaluation after tumor progression and during standard treatment (P = .7). CONCLUSION: CGP of different types of tumors identifies clinically relevant genomic alterations that have benefited from targeted therapy and improve cancer care in a developing country to guide personalized treatment to beneficial outcomes of cancer patients.


Assuntos
Países em Desenvolvimento , Neoplasias Pulmonares , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Estudos Retrospectivos , Neoplasias Pulmonares/patologia , Mutação , Genômica , Sequenciamento de Nucleotídeos em Larga Escala
2.
Chaos ; 33(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37903406

RESUMO

Identifying disturbances in network-coupled dynamical systems without knowledge of the disturbances or underlying dynamics is a problem with a wide range of applications. For example, one might want to know which nodes in the network are being disturbed and identify the type of disturbance. Here, we present a model-free method based on machine learning to identify such unknown disturbances based only on prior observations of the system when forced by a known training function. We find that this method is able to identify the locations and properties of many different types of unknown disturbances using a variety of known forcing functions. We illustrate our results with both linear and nonlinear disturbances using food web and neuronal activity models. Finally, we discuss how to scale our method to large networks.

3.
Chaos ; 33(2): 023140, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36859233

RESUMO

We study synchronization dynamics in populations of coupled phase oscillators with higher-order interactions and community structure. We find that the combination of these two properties gives rise to a number of states unsupported by either higher-order interactions or community structure alone, including synchronized states with communities organized into clusters in-phase, anti-phase, and a novel skew-phase, as well as an incoherent-synchronized state. Moreover, the system displays strong multistability with many of these states stable at the same time. We demonstrate our findings by deriving the low dimensional dynamics of the system and examining the system's bifurcations using stability analysis and perturbation theory.

4.
Chaos ; 33(3): 033116, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37003819

RESUMO

We study the effect of structured higher-order interactions on the collective behavior of coupled phase oscillators. By combining a hypergraph generative model with dimensionality reduction techniques, we obtain a reduced system of differential equations for the system's order parameters. We illustrate our framework with the example of a hypergraph with hyperedges of sizes 2 (links) and 3 (triangles). For this case, we obtain a set of two coupled nonlinear algebraic equations for the order parameters. For strong values of coupling via triangles, the system exhibits bistability and explosive synchronization transitions. We find conditions that lead to bistability in terms of hypergraph properties and validate our predictions with numerical simulations. Our results provide a general framework to study the synchronization of phase oscillators in hypergraphs, and they can be extended to hypergraphs with hyperedges of arbitrary sizes, dynamic-structural correlations, and other features.

5.
Chaos ; 32(5): 053113, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35649990

RESUMO

The largest eigenvalue of the matrix describing a network's contact structure is often important in predicting the behavior of dynamical processes. We extend this notion to hypergraphs and motivate the importance of an analogous eigenvalue, the expansion eigenvalue, for hypergraph dynamical processes. Using a mean-field approach, we derive an approximation to the expansion eigenvalue in terms of the degree sequence for uncorrelated hypergraphs. We introduce a generative model for hypergraphs that includes degree assortativity, and use a perturbation approach to derive an approximation to the expansion eigenvalue for assortative hypergraphs. We define the dynamical assortativity, a dynamically sensible definition of assortativity for uniform hypergraphs, and describe how reducing the dynamical assortativity of hypergraphs through preferential rewiring can extinguish epidemics. We validate our results with both synthetic and empirical datasets.


Assuntos
Epidemias
6.
Chaos ; 30(10): 103117, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33138447

RESUMO

The dynamics of network social contagion processes such as opinion formation and epidemic spreading are often mediated by interactions between multiple nodes. Previous results have shown that these higher-order interactions can profoundly modify the dynamics of contagion processes, resulting in bistability, hysteresis, and explosive transitions. In this paper, we present and analyze a hyperdegree-based mean-field description of the dynamics of the susceptible-infected-susceptible model on hypergraphs, i.e., networks with higher-order interactions, and illustrate its applicability with the example of a hypergraph where contagion is mediated by both links (pairwise interactions) and triangles (three-way interactions). We consider various models for the organization of link and triangle structures and different mechanisms of higher-order contagion and healing. We find that explosive transitions can be suppressed by heterogeneity in the link degree distribution when links and triangles are chosen independently or when link and triangle connections are positively correlated when compared to the uncorrelated case. We verify these results with microscopic simulations of the contagion process and with analytic predictions derived from the mean-field model. Our results show that the structure of higher-order interactions can have important effects on contagion processes on hypergraphs.


Assuntos
Epidemias , Processos Grupais , Infecções/epidemiologia , Infecções/transmissão , Comportamento de Massa , Modelos Biológicos , Rede Social , Humanos
7.
Chaos ; 29(12): 121104, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31893648

RESUMO

We introduce and test a general machine-learning-based technique for the inference of short term causal dependence between state variables of an unknown dynamical system from time-series measurements of its state variables. Our technique leverages the results of a machine learning process for short time prediction to achieve our goal. The basic idea is to use the machine learning to estimate the elements of the Jacobian matrix of the dynamical flow along an orbit. The type of machine learning that we employ is reservoir computing. We present numerical tests on link inference of a network of interacting dynamical nodes. It is seen that dynamical noise can greatly enhance the effectiveness of our technique, while observational noise degrades the effectiveness. We believe that the competition between these two opposing types of noise will be the key factor determining the success of causal inference in many of the most important application situations.

8.
Chaos ; 28(10): 103115, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30384653

RESUMO

It is widely appreciated that balanced excitation and inhibition are necessary for proper function in neural networks. However, in principle, balance could be achieved by many possible configurations of excitatory and inhibitory synaptic strengths and relative numbers of excitatory and inhibitory neurons. For instance, a given level of excitation could be balanced by either numerous inhibitory neurons with weak synapses or a few inhibitory neurons with strong synapses. Among the continuum of different but balanced configurations, why should any particular configuration be favored? Here, we address this question in the context of the entropy of network dynamics by studying an analytically tractable network of binary neurons. We find that entropy is highest at the boundary between excitation-dominant and inhibition-dominant regimes. Entropy also varies along this boundary with a trade-off between high and robust entropy: weak synapse strengths yield high network entropy which is fragile to parameter variations, while strong synapse strengths yield a lower, but more robust, network entropy. In the case where inhibitory and excitatory synapses are constrained to have similar strength, we find that a small, but non-zero fraction of inhibitory neurons, like that seen in mammalian cortex, results in robust and relatively high entropy.

9.
Chaos ; 27(8): 083121, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28863484

RESUMO

In the last decade, it has been shown that a large class of phase oscillator models admit low dimensional descriptions for the macroscopic system dynamics in the limit of an infinite number N of oscillators. The question of whether the macroscopic dynamics of other similar systems also have a low dimensional description in the infinite N limit has, however, remained elusive. In this paper, we show how techniques originally designed to analyze noisy experimental chaotic time series can be used to identify effective low dimensional macroscopic descriptions from simulations with a finite number of elements. We illustrate and verify the effectiveness of our approach by applying it to the dynamics of an ensemble of globally coupled Landau-Stuart oscillators for which we demonstrate low dimensional macroscopic chaotic behavior with an effective 4-dimensional description. By using this description, we show that one can calculate dynamical invariants such as Lyapunov exponents and attractor dimensions. One could also use the reconstruction to generate short-term predictions of the macroscopic dynamics.

10.
Phys Rev Lett ; 112(13): 138103, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24745460

RESUMO

The collective dynamics of a network of excitable nodes changes dramatically when inhibitory nodes are introduced. We consider inhibitory nodes which may be activated just like excitatory nodes but, upon activating, decrease the probability of activation of network neighbors. We show that, although the direct effect of inhibitory nodes is to decrease activity, the collective dynamics becomes self-sustaining. We explain this counterintuitive result by defining and analyzing a "branching function" which may be thought of as an activity-dependent branching ratio. The shape of the branching function implies that, for a range of global coupling parameters, dynamics are self-sustaining. Within the self-sustaining region of parameter space lies a critical line along which dynamics take the form of avalanches with universal scaling of size and duration, embedded in a ceaseless time series of activity. Our analyses, confirmed by numerical simulation, suggest that inhibition may play a counterintuitive role in excitable networks.


Assuntos
Modelos Teóricos , Simulação por Computador , Processos Estocásticos
11.
Chaos ; 24(4): 043126, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25554046

RESUMO

The spatiotemporal dynamics of cardiac tissue is an active area of research for biologists, physicists, and mathematicians. Of particular interest is the study of period-doubling bifurcations and chaos due to their link with cardiac arrhythmogenesis. In this paper, we study the spatiotemporal dynamics of a recently developed model for calcium-driven alternans in a one dimensional cable of tissue. In particular, we observe in the cable coexistence of regions with chaotic and multi-periodic dynamics over wide ranges of parameters. We study these dynamics using global and local Lyapunov exponents and spatial trajectory correlations. Interestingly, near nodes-or phase reversals-low-periodic dynamics prevail, while away from the nodes, the dynamics tend to be higher-periodic and eventually chaotic. Finally, we show that similar coexisting multi-periodic and chaotic dynamics can also be observed in a detailed ionic model.


Assuntos
Relógios Biológicos/fisiologia , Sistema de Condução Cardíaco/fisiologia , Frequência Cardíaca/fisiologia , Modelos Cardiovasculares , Dinâmica não Linear , Animais , Simulação por Computador , Humanos , Oscilometria/métodos
12.
Cancer Manag Res ; 16: 781-789, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39010861

RESUMO

Purpose: Lung cancer is the leading cause of cancer-related deaths worldwide. However, with the optimization of screening strategies and advances in treatment, mortality has been decreasing in recent years. In this study, we describe non-small cell lung cancer patients diagnosed between 2021 and 2022 at a high-complexity hospital in Latin America, as well as the immunohistochemistry techniques used to screen for ROS1 rearrangements, in the context of the recent approval of crizotinib for the treatment of ROS1 rearrangements in non-small cell lung cancer in Colombia. Methods: A descriptive cross-sectional study was conducted. Sociodemographic, clinical, and molecular pathology information from non-small cell lung cancer individuals who underwent immunohistochemistry to detect ROS1 rearrangements between 2021 and 2022 at Fundación Valle del Lili (Cali, Colombia) was recorded. The clinical outcomes of confirmed ROS1 rearrangements in non-small cell lung cancer patients were reported. Results: One hundred and thirty-six patients with non-small cell lung cancer were included. The median age at diagnosis was 69.8 years (interquartile range 61.9-77.7). At diagnosis, 69.8% (n = 95) were at stage IV. ROS1 immunohistochemistry was performed using the monoclonal D4D6 antibody clone in 54.4% (n = 74) of the cases, while 45.6% (n = 62) were done with the monoclonal SP384 antibody clone. Two patients were confirmed to have ROS1 rearrangements in non-small cell lung cancer using next-generation sequencing and received crizotinib. On follow-up at months 5.3 and 7.0, one patient had a partial response, and the other had oligo-progression, respectively. Conclusion: Screening for ROS1 rearrangements in non-small cell lung cancer is imperative, as multiple prospective studies have shown improved clinical outcomes with tyrosine kinase inhibitors. Given the recent approval of crizotinib in Colombia, public health policies must be oriented toward early detection of driver mutations and prompt treatment. Additionally, future approvals of newly tested tyrosine kinase inhibitors should be anticipated.

13.
14.
Chaos ; 23(3): 033142, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24089978

RESUMO

While considerable progress has been made in the analysis of large systems containing a single type of coupled dynamical component (e.g., coupled oscillators or coupled switches), systems containing diverse components (e.g., both oscillators and switches) have received much less attention. We analyze large, hybrid systems of interconnected Kuramoto oscillators and Hopfield switches with positive feedback. In this system, oscillator synchronization promotes switches to turn on. In turn, when switches turn on, they enhance the synchrony of the oscillators to which they are coupled. Depending on the choice of parameters, we find theoretically coexisting stable solutions with either (i) incoherent oscillators and all switches permanently off, (ii) synchronized oscillators and all switches permanently on, or (iii) synchronized oscillators and switches that periodically alternate between the on and off states. Numerical experiments confirm these predictions. We discuss how transitions between these steady state solutions can be onset deterministically through dynamic bifurcations or spontaneously due to finite-size fluctuations.


Assuntos
Oscilometria/métodos , Teoria de Sistemas , Algoritmos , Ciclo Celular , Simulação por Computador , Dinâmica não Linear , Reprodutibilidade dos Testes , Leveduras/fisiologia
15.
Phys Rev E ; 108(3-1): 034311, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37849151

RESUMO

The division of a social group into subgroups with opposing opinions, which we refer to as opinion disparity, is a prevalent phenomenon in society. This phenomenon has been modeled by including mechanisms such as opinion homophily, bounded confidence interactions, and social reinforcement mechanisms. In this paper, we study a complementary mechanism for the formation of opinion disparity based on higher-order interactions, i.e., simultaneous interactions between multiple agents. We present an extension of the planted partition model for uniform hypergraphs as a simple model of community structure, and we consider the hypergraph Susceptible-Infected-Susceptible (SIS) model on a hypergraph with two communities where the binary ideology can spread via links (pairwise interactions) and triangles (three-way interactions). We approximate this contagion process with a mean-field model and find that for strong enough community structure, the two communities can hold very different average opinions. We determine the regimes of structural and infectious parameters for which this opinion disparity can exist, and we find that the existence of these disparities is much more sensitive to the triangle community structure than to the link community structure. We show that the existence and type of opinion disparities are extremely sensitive to differences in the sizes of the two communities.

16.
Phys Rev Lett ; 108(10): 108103, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22463458

RESUMO

Spatially discordant alternans is a widely observed pattern of voltage and calcium signals in cardiac tissue that can precipitate lethal cardiac arrhythmia. Using spatially coupled iterative maps of the beat-to-beat dynamics, we explore this pattern's dynamics in the regime of a calcium-dominated period-doubling instability at the single-cell level. We find a novel nonlinear bifurcation associated with the formation of a discontinuous jump in the amplitude of calcium alternans at nodes separating discordant regions. We show that this jump unidirectionally pins nodes by preventing their motion away from the pacing site following a pacing rate decrease but permitting motion towards this site following a rate increase. This unidirectional pinning leads to strongly history-dependent node motion that is strongly arrhythmogenic.


Assuntos
Potenciais de Ação/fisiologia , Sistema de Condução Cardíaco/fisiologia , Modelos Cardiovasculares , Cálcio/metabolismo , Nó Sinoatrial/fisiologia
17.
Phys Rev E ; 106(3-1): 034304, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36266840

RESUMO

The coupling of some types of oscillators requires the mediation of a physical link between them, rendering the distance between oscillators a critical factor to achieve synchronization. In this paper, we propose and explore a greedy algorithm to grow spatially embedded oscillator networks. The algorithm is constructed in such a way that nodes are sequentially added seeking to minimize the cost of the added links' length and optimize the linear stability of the growing network. We show that, for appropriate parameters, the stability of the resulting network, measured in terms of the dynamics of small perturbations and the correlation length of the disturbances, can be significantly improved with a minimal added length cost. In addition, we analyze numerically the topological properties of the resulting networks, and we find that, while being more stable, their degree distribution is approximately exponential and independent of the algorithm parameters. Moreover, we find that other topological parameters related with network resilience and efficiency are also affected by the proposed algorithm. Finally, we extend our findings to more general classes of networks with different sources of heterogeneity. Our results are a step in the development of algorithms for the directed growth of oscillatory networks with desirable stability, dynamical and topological properties.

18.
Phys Rev Lett ; 106(5): 058101, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21405438

RESUMO

The collective dynamics of a network of coupled excitable systems in response to an external stimulus depends on the topology of the connections in the network. Here we develop a general theoretical approach to study the effects of network topology on dynamic range, which quantifies the range of stimulus intensities resulting in distinguishable network responses. We find that the largest eigenvalue of the weighted network adjacency matrix governs the network dynamic range. When the largest eigenvalue is exactly one, the system is in a critical state and its dynamic range is maximized. Further, we examine higher order behavior of the steady state system, which predicts that networks with more homogeneous degree distributions should have higher dynamic range. Our analysis, confirmed by numerical simulations, generalizes previous studies in terms of the largest eigenvalue of the adjacency matrix.


Assuntos
Modelos Teóricos , Retroalimentação , Processos Estocásticos
19.
Chaos ; 21(2): 023122, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21721764

RESUMO

We consider systems of many spatially distributed phase oscillators that interact with their neighbors. Each oscillator is allowed to have a different natural frequency, as well as a different response time to the signals it receives from other oscillators in its neighborhood. Using the ansatz of Ott and Antonsen [Chaos 18, 037113 (2008)] and adopting a strategy similar to that employed in the recent work of Laing [Physica D 238, 1569 (2009)], we reduce the microscopic dynamics of these systems to a macroscopic partial-differential-equation description. Using this macroscopic formulation, we numerically find that finite oscillator response time leads to interesting spatiotemporal dynamical behaviors including propagating fronts, spots, target patterns, chimerae, spiral waves, etc., and we study interactions and evolutionary behaviors of these spatiotemporal patterns.

20.
Chaos ; 21(2): 025117, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21721795

RESUMO

We study the effects of network topology on the response of networks of coupled discrete excitable systems to an external stochastic stimulus. We extend recent results that characterize the response in terms of spectral properties of the adjacency matrix by allowing distributions in the transmission delays and in the number of refractory states and by developing a nonperturbative approximation to the steady state network response. We confirm our theoretical results with numerical simulations. We find that the steady state response amplitude is inversely proportional to the duration of refractoriness, which reduces the maximum attainable dynamic range. We also find that transmission delays alter the time required to reach steady state. Importantly, neither delays nor refractoriness impact the general prediction that criticality and maximum dynamic range occur when the largest eigenvalue of the adjacency matrix is unity.


Assuntos
Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA