Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(43): 17404-17413, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31589441

RESUMO

Ruthenium-pincer complexes bearing CNN- and PNN-pincer ligands with diethyl- or diisopropylamino side groups, which have previously been reported to be active precatalysts for ester hydrogenation, undergo dehydroalkylation on heating in the presence of tricyclohexylphosphine to release ethane or propane, giving five-coordinate ruthenium(0) complexes containing a nascent imine functional group. Ethane or propane is also released under the conditions of catalytic ester hydrogenation, and time-course studies show that this release is concomitant with the onset of catalysis. A new PNN-pincer ruthenium(0)-imine complex is a highly active catalyst for ester hydrogenation at room temperature, giving up to 15 500 turnovers with no added base. This complex was shown to react reversibly at room temperature with two equivalents of hydrogen to give a ruthenium(II)-dihydride complex, where the imine functionality has been hydrogenated to give a protic amine side group. These observations have potentially broad implications for the identities of catalytic intermediates in ester hydrogenation and related transformations.

2.
Chem Sci ; 12(24): 8477-8492, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35355805

RESUMO

We previously demonstrated that Milstein's seminal diethylamino-substituted PNN-pincer-ruthenium catalyst for ester hydrogenation is activated by dehydroalkylation of the pincer ligand, releasing ethane and eventually forming an NHEt-substituted derivative that we proposed is the active catalyst. In this paper, we present a computational and experimental mechanistic study supporting this hypothesis. Our DFT analysis shows that the minimum-energy pathways for hydrogen activation, ester hydrogenolysis, and aldehyde hydrogenation rely on the key involvement of the nascent N-H group. We have isolated and crystallographically characterized two catalytic intermediates, a ruthenium dihydride and a ruthenium hydridoalkoxide, the latter of which is the catalyst resting state. A detailed kinetic study shows that catalytic ester hydrogenation is first-order in ruthenium and hydrogen, shows saturation behavior in ester, and is inhibited by the product alcohol. A global fit of the kinetic data to a simplified model incorporating the hydridoalkoxide and dihydride intermediates and three kinetically relevant transition states showed excellent agreement with the results from DFT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA