Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Physiol ; 602(12): 2985-2998, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38766932

RESUMO

Prolonged bed rest impairs standing balance but the underlying mechanisms are uncertain. Previous research suggests strength loss is not the cause, leaving impaired sensorimotor control as an alternative. Here we examine vestibular control of posture in 18 male volunteers before and after 60 days of bed rest. Stochastic vestibular stimulation (SVS) was used to evoke sway responses before, 1 and 6 days after bed rest under different head yaw orientations. The directional accuracy and precision of these responses were calculated from ground reaction force vectors. Bed rest caused up to 63% increases in spontaneous standing sway and 31% reductions in leg strength, changes which were uncorrelated. The increase in sway was exacerbated when the eyes were closed. Mean directions of SVS-evoked sway responses were unaffected, being directed towards the anodal ear and rotating in line with head orientation in the same way before and after bed rest. However, individual trial analysis revealed 25%-30% increases in directional variability, which were significantly correlated with the increase in spontaneous sway (r = 0.48-0.71; P ≤ 0.044) and were still elevated on day 6 post-bed rest. This reveals that individual sway responses may be inappropriately oriented, a finding masked by the averaging process. Our results confirm that impaired balance following prolonged bedrest is not related to loss of strength. Rather, they demonstrate that the sensorimotor transformation process which converts vestibular feedback into appropriately directed balance responses is impaired. KEY POINTS: Prolonged inactivity impairs balance but previous research suggests this is not caused by loss of strength. Here we investigated vestibular control of balance before and after 60 days of bed rest using electrical vestibular stimulation (EVS) to evoke sway responses. Spontaneous sway significantly increased and muscle strength reduced following bed rest, but, in keeping with previous research, these two effects were not correlated. While the overall accuracy of EVS-evoked sway responses was unaffected, their directional variability significantly increased following bed rest, and this was correlated with the increases in spontaneous sway. We have shown that the ability to transform head-centred vestibular feedback into an appropriately directed body sway response is negatively affected by prolonged inactivity; this may contribute to the impaired balance commonly observed following bed rest.


Assuntos
Repouso em Cama , Equilíbrio Postural , Vestíbulo do Labirinto , Humanos , Masculino , Equilíbrio Postural/fisiologia , Adulto , Vestíbulo do Labirinto/fisiologia , Adulto Jovem
2.
Exp Physiol ; 109(5): 729-737, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488678

RESUMO

Due to Achilles tendon compliance, passive ankle stiffness is insufficient to stabilise the body when standing. This results in 'paradoxical' muscle movement, whereby calf muscles tend to shorten during forward body sway. Natural variation in stiffness may affect this movement. This may have consequences for postural control, with compliant ankles placing greater reliance upon active neural control rather than stretch reflexes. Previous research also suggests ageing reduces ankle stiffness, possibly contributing to reduced postural stability. Here we determine the relationship between ankle stiffness and calf muscle movement during standing, and whether this is associated with postural stability or age. Passive ankle stiffness was measured during quiet stance in 40 healthy volunteers ranging from 18 to 88 years of age. Medial gastrocnemius muscle length was also recorded using ultrasound. We found a significant inverse relationship between ankle stiffness and paradoxical muscle movement, that is, more compliant ankles were associated with greater muscle shortening during forward sway (r ≥ 0.33). This was seen during both quiet stance as well as voluntary sway. However, we found no significant effects of age upon stiffness, paradoxical motion or postural sway. Furthermore, neither paradoxical muscle motion nor ankle stiffness was associated with postural sway. These results show that natural variation in ankle stiffness alters the extent of paradoxical calf muscle movement during stance. However, the absence of a clear relationship to postural sway suggests that neural control mechanisms are more than capable of compensating for a lack of inherent joint stiffness.


Assuntos
Tornozelo , Músculo Esquelético , Equilíbrio Postural , Humanos , Músculo Esquelético/fisiologia , Adulto , Idoso , Pessoa de Meia-Idade , Masculino , Feminino , Equilíbrio Postural/fisiologia , Adulto Jovem , Idoso de 80 Anos ou mais , Tornozelo/fisiologia , Adolescente , Movimento/fisiologia , Tendão do Calcâneo/fisiologia , Tendão do Calcâneo/diagnóstico por imagem , Articulação do Tornozelo/fisiologia , Envelhecimento/fisiologia , Perna (Membro)/fisiologia , Postura/fisiologia
3.
Bioelectromagnetics ; 45(4): 171-183, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38348647

RESUMO

In recent years, an increasing number of studies have discussed the mechanisms of vestibular activation in strong magnetic field settings such as occur in a magnetic resonance imaging scanner environment. Amid the different hypotheses, the Lorentz force explanation currently stands out as the most plausible mechanism, as evidenced by activation of the vestibulo-ocular reflex. Other hypotheses have largely been discarded. Nonetheless, both human data and computational modeling suggest that electromagnetic induction could be a valid mechanism which may coexist alongside the Lorentz force. To further investigate the induction hypothesis, we provide, herein, a first of its kind dosimetric analysis to estimate the induced electric fields at the vestibular system and compare them with what galvanic vestibular stimulation would generate. We found that electric fields strengths from induction match galvanic vestibular stimulation strengths generating vestibular responses. This review examines the evidence in support of electromagnetic induction of vestibular responses, and whether movement-induced time-varying magnetic fields should be further considered and investigated.


Assuntos
Reflexo Vestíbulo-Ocular , Vestíbulo do Labirinto , Humanos , Estimulação Elétrica/métodos , Reflexo Vestíbulo-Ocular/fisiologia , Vestíbulo do Labirinto/fisiologia , Fenômenos Eletromagnéticos , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA