Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Opt Lett ; 46(13): 3155-3158, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34197404

RESUMO

Using a supercontinuum laser, reflective optics, and a spatial filter, we measure two-dimensional small-angle light-scattering patterns for a variety of microparticles including spheres, salt, sand, and volcanic dust. The measurements are done at 13 wavelengths from 450-850 nm, where the absence of refractive optical elements minimizes the effects of chromatic aberration. Qualitative particle-material sensitivity is demonstrated by layering differently colored patterns. Last, the multispectral capability of our device demonstrates a new possibility to probe different q-space regimes for a given particle in a single measurement.

2.
Opt Express ; 28(17): 25114-25122, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32907040

RESUMO

An experiment is described where two-dimensional small-angle light scattering (2D-SALS) patterns from single particles are measured in the infrared through a lens-free approach. Spatial filtering is employed to separate scattered light from unscattered light to within approximately one degree from the forward direction. Non-planar reflective elements are used in the filtering process, permitting 2D-SALS measurements to be done without chromatic aberrations over a broad spectral range and from 0.8 to 8 degrees in the polar scattering angle and zero to 360 degrees in the azimuthal angle. Patterns from spherical microparticles are presented along with nonspherical particles including volcanic ash and salt. An asymmetry analysis is applied to demonstrate an ability to differentiate spherical from nonspherical particles from the 2D-SALS patterns.

3.
Opt Express ; 15(5): 2517-29, 2007 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-19532488

RESUMO

In this paper the response purely refractive of a thin nonlinear material, in the z-scan technique experiment, is modeled as a lens with a focal length that is a function of some integer power of the incident beam radius. We demonstrate that different functional dependences of the photoinduced lens of a thin nonlinear material give typical z-scan curves with special features. The analysis is based on the propagation of Gaussian beams in the approximation of thin lens and small distortion for the nonlinear sample. We obtain that the position of the peak and valley, the transmittance near the focus and the transmittance far from the Rayleigh range depend on the functional dependence of the focal length. Special values of the power reproduce the results obtained for some materials under cw excitation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA