Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Soft Matter ; 17(27): 6646-6660, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34152345

RESUMO

We investigate experimentally the behavior of self-propelled water-in-oil droplets, confined in capillaries of different square and circular cross-sections. The droplet's activity comes from the formation of swollen micelles at its interface. In straight capillaries the velocity of the droplet decreases with increasing confinement. However, at very high confinement, the velocity converges toward a non-zero value, so that even very long droplets swim. Stretched circular capillaries are used to explore even higher confinement. The lubrication layer around the droplet then takes a non-uniform thickness which constitutes a significant difference to usual flow-driven passive droplets. A neck forms at the rear of the droplet, deepens with increasing confinement, and eventually undergoes successive spontaneous splitting events for large enough confinement. Such observations stress the critical role of the activity of the droplet interface in the droplet's behavior under confinement. We then propose an analytical formulation by integrating the interface activity and the swollen micelle transport problem into the classical Bretherton approach. The model accounts for the convergence of the droplet's velocity to a finite value for large confinement, and for the non-classical shape of the lubrication layer. We further discuss on the saturation of the micelle concentration along the interface, which would explain the divergence of the lubrication layer thickness for long enough droplets, eventually leading to spontaneous droplet division.

2.
Soft Matter ; 15(13): 2782-2790, 2019 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-30887970

RESUMO

Encapsulation of chemicals using polymer membranes enables control of their transport and delivery for applications such as agrochemistry or detergency. To rationalize the design of polymer capsules, it is necessary to understand how the membranes' mechanical properties control the transport and release of the cargo. In this article, we use microfluidics to produce model polymer capsules and study in situ their behavior in controlled divergent flows. Our model capsules are obtained by assembling polymer mono and hydrogen-bonded bilayers at the surface of an oil droplet in water. We also use microfluidics to probe in situ the mechanical properties of the membranes in a controlled divergent flow generated by introducing the capsules through a constriction and then in a larger chamber. The deformation and relaxation of the capsules depend on their composition and especially on the molecular interactions between the polymer chains that form the membranes and the anchoring energy of the first layer. We develop a model and perform numerical simulations to extract the main interfacial properties of the capsules from the measurement of their deformations in the microchannels.

3.
Langmuir ; 32(24): 6089-96, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27176147

RESUMO

We study the 2D rheological properties of hydrogen-bonded polymer multilayers assembled directly at dodecane-water and air-water interfaces using pendant drop/bubble dilation and the double-wall ring method for interfacial shear. We use poly(vinylpyrrolidone) (PVP) as a proton acceptor and a series of polyacrylic acids as proton donors. The PAA series of chains with varying hydrophobicity was fashioned from poly(acrylic acid), (PAA), polymethacrylic acid (PMAA), and a homemade hydrophobically modified polymer. The latter consisted of a PAA backbone covalently grafted with C12 moieties at 1% mol (referred to as PAA-1C12). Replacing PAA with the more hydrophobic PMAA provides a route for combining hydrogen bonding and hydrophobic interactions to increase the strength and/or the number of links connecting the polyacid chains to PVP. This systematic replacement allows for control of the ability of the monomer units inside the absorbed polymer layer to reorganize as the interface is sheared or compressed. Consequently, the interplay of hydrogen bonding and hydrophobic interactions leads to control of the resistance of the polymer multilayers to both shear and dilation. Using PAA-1C12 as the first layer improves the anchoring energy of a few monomers of the chain without changing the strength of the monomer-monomer contact in the complex layer. In this way, the layer does not resist shear but resists compression. This strategy provides the means for using hydrophobicity to control the interfacial dynamics of the complexes adsorbed at the interface of the bubbles and droplets that either elongate or buckle upon compression. Moreover, we demonstrate the pH responsiveness of these interfacial multilayers by adding aliquots of NaOH to the acidic water subphase surrounding the bubbles and droplets. Subsequent pH changes can eventually break the polymer complex, providing opportunities for encapsulation/release applications.

4.
ACS Macro Lett ; 10(2): 204-209, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35570784

RESUMO

Complexation of polymers at liquid interfaces is an emerging technique to produce all-liquid printable and self-healing devices and membranes. It is crucial to control the assembly process, but the mechanisms at play remain unclear. Using two different reflectometric methods, we investigate the spontaneous growth of H-bonded PPO-PMAA (polypropylene oxide-polymetacrylic acid) membranes at a flat liquid-liquid interface. We find that the membrane thickness h grows with time t as h ∼ t1/2, which is reminiscent of a diffusion-limited process. However, counterintuitively, we observe that this process is faster as the PPO molar mass increases. We are able to rationalize these results with a model which considers the diffusion of the PPO chains within the growing membrane. The architecture of the latter is described as a gel-like porous network, with a pore size much smaller than the radius of the diffusing PPO chains, thus inducing entropic barriers that hinder the diffusion process. From the comparison between the experimental data and the result of the model, we extract some key piece of information about the microscopic structure of the membrane. This study opens the route toward the rational design of self-assembled membranes and capsules with optimal properties.


Assuntos
Polímeros , Cápsulas , Difusão , Membranas , Polímeros/química , Porosidade
5.
J Phys Chem B ; 113(12): 3906-9, 2009 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-19673137

RESUMO

Water on solid decorated with hydrophobic defects (such as micropillars) often stays at the top of the defects in a so-called fakir state, which explains the superhydrophobicity observed in such case, provided that the density of defects is small enough. Here we show that this situation provides an ideal frame for studying the contact angle hysteresis; the phase below the liquid is "perfect" and slippery (it is air), contrasting with pillars' tops whose edges form strong pining sites for the contact line. This model system thus allows us to study the hysteresis as a function of the density of defects and to compare it to the classical theory by Joanny and de Gennes, which is based on very similar hypothesis.

6.
Med Eng Phys ; 55: 25-33, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29599066

RESUMO

Blood platelets circulate in the blood and adhere to wounded vessels to initiate coagulation and healing. The first step of this process is the capture of flowing platelets by adhesive molecules located at the wounded vessel wall. In this article, we study the transport of fixed blood platelets in a microfluidic channel coated with von Willebrand factor (vWF), a large multimeric protein expressed by endothelial cells in the vicinity of wounds. We measure the number of platelets adsorbed at the channel surface as a function of both time and space. Experimental results are compared with a new transport model. We show that transverse diffusion is an important feature of our model, while the rolling behaviour of the bounded platelets can be neglected.


Assuntos
Plaquetas/citologia , Movimento Celular , Fator de von Willebrand/química , Plaquetas/química , Humanos , Dispositivos Lab-On-A-Chip , Modelos Biológicos , Propriedades de Superfície
7.
Sci Rep ; 7(1): 1265, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28455535

RESUMO

Biocompatible microencapsulation is of widespread interest for the targeted delivery of active species in fields such as pharmaceuticals, cosmetics and agro-chemistry. Capsules obtained by the self-assembly of polymers at interfaces enable the combination of responsiveness to stimuli, biocompatibility and scaled up production. Here, we present a one-step method to produce in situ membranes at oil-water interfaces, based on the hydrogen bond complexation of polymers between H-bond acceptor and donor in the oil and aqueous phases, respectively. This robust process is realized through different methods, to obtain capsules of various sizes, from the micrometer scale using microfluidics or rotor-stator emulsification up to the centimeter scale using drop dripping. The polymer layer exhibits unique self-healing and pH-responsive properties. The membrane is viscoelastic at pH = 3, softens as pH is progressively raised, and eventually dissolves above pH = 6 to release the oil phase. This one-step method of preparation paves the way to the production of large quantities of functional capsules.


Assuntos
Materiais Biocompatíveis/síntese química , Cápsulas/síntese química , Portadores de Fármacos/síntese química , Membranas/química , Membranas/efeitos dos fármacos , Polímeros/síntese química , Tecnologia Farmacêutica/métodos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio
8.
Sci Rep ; 6: 21700, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26898346

RESUMO

We present a new, rapid method for producing blood platelets in vitro from cultured megakaryocytes based on a microfluidic device. This device consists in a wide array of VWF-coated micropillars. Such pillars act as anchors on megakaryocytes, allowing them to remain trapped in the device and subjected to hydrodynamic shear. The combined effect of anchoring and shear induces the elongation of megakaryocytes and finally their rupture into platelets and proplatelets. This process was observed with megakaryocytes from different origins and found to be robust. This original bioreactor design allows to process megakaryocytes at high throughput (millions per hour). Since platelets are produced in such a large amount, their extensive biological characterisation is possible and shows that platelets produced in this bioreactor are functional.


Assuntos
Plaquetas/citologia , Sangue Fetal/citologia , Dispositivos Lab-On-A-Chip , Megacariócitos/citologia , Modelos Biológicos , Antígenos CD/fisiologia , Biomarcadores/metabolismo , Fenômenos Biomecânicos , Biomimética , Reatores Biológicos , Plaquetas/fisiologia , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Sangue Fetal/fisiologia , Expressão Gênica , Humanos , Megacariócitos/fisiologia , Ativação Plaquetária/fisiologia , Agregação Plaquetária/fisiologia , Contagem de Plaquetas , Reologia , Estresse Mecânico
9.
Faraday Discuss ; 146: 19-33; discussion 79-101, 395-401, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21043411

RESUMO

Superhydrophobicity is mainly remarkable for the special dynamical behaviours it generates: low adhesion, giant hydrodynamic slip, frictionless motion, rebounds after impacts. Here we discuss most of these properties. We first recall how contact angle hysteresis can be minimized in this state. Then, we show that a water drop first follows the Galilean law of free fall on an incline, before reaching a stationary state, for which we discuss the associated friction. Finally, the property of water repellency (that is, rebounds after impact) is presented. We describe in particular how the texture responsible for superhydrophobicity can also influence the figure of impact at a very large scale.

10.
Philos Trans A Math Phys Eng Sci ; 366(1870): 1539-56, 2008 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-18192172

RESUMO

Superhydrophobic materials recently attracted a lot of attention, owing to the potential practical applications of such surfaces--they literally repel water, which hardly sticks to them, bounces off after an impact and slips on them. In this short review, we describe how water repellency arises from the presence of hydrophobic microstructures at the solid surface. A drop deposited on such a substrate can float above the textures, mimicking at room temperature what happens on very hot plates; then, a vapour layer comes between the solid and the volatile liquid, as described long ago by Leidenfrost. We present several examples of superhydrophobic materials (either natural or synthetic), and stress more particularly the stability of the air cushion--the liquid could also penetrate the textures, inducing a very different wetting state, much more sticky, due to the possibility of pinning on the numerous defects. This description allows us to discuss (in quite a preliminary way) the optimal design to be given to a solid surface to make it robustly water repellent.


Assuntos
Adesivos , Interações Hidrofóbicas e Hidrofílicas , Água , Animais , Fenômenos Químicos , Físico-Química , Heterópteros/fisiologia , Locomoção , Propriedades de Superfície , Aderências Teciduais , Volatilização , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA