Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768569

RESUMO

In the cell, RNA exists and functions in a complex with RNA binding proteins (RBPs) that regulate each step of the RNA life cycle from transcription to degradation. Central to this regulation is the role of several molecular chaperones that ensure the correct interactions between RNA and proteins, while aiding the biogenesis of large RNA-protein complexes (ribonucleoproteins or RNPs). Accurate formation of RNPs is fundamentally important to cellular development and function, and its impairment often leads to disease. The survival motor neuron (SMN) protein exemplifies this biological paradigm. SMN is part of a multi-protein complex essential for the biogenesis of various RNPs that function in RNA metabolism. Mutations leading to SMN deficiency cause the neurodegenerative disease spinal muscular atrophy (SMA). A fundamental question in SMA biology is how selective motor system dysfunction results from reduced levels of the ubiquitously expressed SMN protein. Recent clarification of the central role of the SMN complex in RNA metabolism and a thorough characterization of animal models of SMA have significantly advanced our knowledge of the molecular basis of the disease. Here we review the expanding role of SMN in the regulation of gene expression through its multiple functions in RNP biogenesis. We discuss developments in our understanding of SMN activity as a molecular chaperone of RNPs and how disruption of SMN-dependent RNA pathways can contribute to the SMA phenotype.


Assuntos
Atrofia Muscular Espinal , Doenças Neurodegenerativas , Animais , Neurônios Motores/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/genética , Proteínas do Complexo SMN/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , RNA/genética , RNA/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
2.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240341

RESUMO

Many conditions can present with accumulation of calcium in the brain and manifest with a variety of neurological symptoms. Brain calcifications can be primary (idiopathic or genetic) or secondary to various pathological conditions (e.g., calcium-phosphate metabolism derangement, autoimmune disorders and infections, among others). A set of causative genes associated with primary familial brain calcification (PFBC) has now been identified, and include genes such as SLC20A2, PDGFB, PDGFRB, XPR1, MYORG, and JAM2. However, many more genes are known to be linked with complex syndromes characterized by brain calcifications and additional neurologic and systemic manifestations. Of note, many of these genes encode for proteins involved in cerebrovascular and blood-brain barrier functions, which both represent key anatomical structures related to these pathological phenomena. As a growing number of genes associated with brain calcifications is identified, pathways involved in these conditions are beginning to be understood. Our comprehensive review of the genetic, molecular, and clinical aspects of brain calcifications offers a framework for clinicians and researchers in the field.


Assuntos
Encefalopatias , Calcinose , Humanos , Encefalopatias/metabolismo , Receptor do Retrovírus Politrópico e Xenotrópico , Cálcio/metabolismo , Encéfalo/metabolismo , Calcinose/genética , Calcinose/metabolismo , Biologia Molecular , Mutação , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética
4.
Hum Mol Genet ; 23(2): 342-54, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24006477

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by the degeneration of motor neurons. Currently, there is no effective therapy for ALS. Stem cell transplantation is a potential therapeutic strategy for ALS, and the reprogramming of adult somatic cells into induced pluripotent stem cells (iPSCs) represents a novel cell source. In this study, we isolated a specific neural stem cell (NSC) population from human iPSCs based on high aldehyde dehydrogenase activity, low side scatter and integrin VLA4 positivity. We assessed the therapeutic effects of these NSCs on the phenotype of ALS mice after intrathecal or intravenous injections. Transplanted NSCs migrated and engrafted into the central nervous system via both routes of injection. Compared with control ALS, treated ALS mice exhibited improved neuromuscular function and motor unit pathology and significantly increased life span, in particular with the systemic administration of NSCs (15%). These positive effects are linked to multiple mechanisms, including production of neurotrophic factors and reduction of micro- and macrogliosis. NSCs induced a decrease in astrocyte number through the activation of the vanilloid receptor TRPV1. We conclude that minimally invasive injections of iPSC-derived NSCs can exert a therapeutic effect in ALS. This study contributes to advancements in iPSC-mediated approaches for treating ALS and other neurodegenerative diseases.


Assuntos
Aldeído Desidrogenase/metabolismo , Esclerose Lateral Amiotrófica/terapia , Células-Tronco Pluripotentes Induzidas/citologia , Integrina alfa4beta1/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/transplante , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Transplante de Células-Tronco/métodos , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Canais de Cátion TRPV/metabolismo
5.
Cell Mol Life Sci ; 71(6): 999-1015, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24100629

RESUMO

Neurodegenerative disorders are characterized by the selective vulnerability and progressive loss of discrete neuronal populations. Non-neuronal cells appear to significantly contribute to neuronal loss in diseases such as amyotrophic lateral sclerosis (ALS), Parkinson, and Alzheimer's disease. In ALS, there is deterioration of motor neurons in the cortex, brainstem, and spinal cord, which control voluntary muscle groups. This results in muscle wasting, paralysis, and death. Neuroinflammation, characterized by the appearance of reactive astrocytes and microglia as well as macrophage and T-lymphocyte infiltration, appears to be highly involved in the disease pathogenesis, highlighting the involvement of non-neuronal cells in neurodegeneration. There appears to be cross-talk between motor neurons, astrocytes, and immune cells, including microglia and T-lymphocytes, which are subsequently activated. Currently, effective therapies for ALS are lacking; however, the non-cell autonomous nature of ALS may indicate potential therapeutic targets. Here, we review the mechanisms of action of astrocytes, microglia, and T-lymphocytes in the nervous system in health and during the pathogenesis of ALS. We also evaluate the therapeutic potential of these cellular populations, after transplantation into ALS patients and animal models of the disease, in modulating the environment surrounding motor neurons from pro-inflammatory to neuroprotective. We also thoroughly discuss the recent advances made in the field and caveats that need to be overcome for clinical translation of cell therapies aimed at modulating non-cell autonomous events to preserve remaining motor neurons in patients.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Astrócitos/transplante , Terapia Baseada em Transplante de Células e Tecidos/métodos , Microglia/transplante , Linfócitos T/transplante , Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/patologia , Animais , Astrócitos/metabolismo , Células COS , Chlorocebus aethiops , Modelos Animais de Doenças , Humanos , Inflamação/imunologia , Inflamação/terapia , Macrófagos/imunologia , Camundongos , Microglia/metabolismo , Neurônios Motores/metabolismo , Linfócitos T/imunologia
6.
Cell Mol Life Sci ; 71(17): 3257-68, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24699704

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by degeneration of upper and lower motor neurons. There are currently no clinically impactful treatments for this disorder. Death occurs 3-5 years after diagnosis, usually due to respiratory failure. ALS pathogenesis seems to involve several pathological mechanisms (i.e., oxidative stress, inflammation, and loss of the glial neurotrophic support, glutamate toxicity) with different contributions from environmental and genetic factors. This multifaceted combination highlights the concept that an effective therapeutic approach should counteract simultaneously different aspects: stem cell therapies are able to maintain or rescue motor neuron function and modulate toxicity in the central nervous system (CNS) at the same time, eventually representing the most comprehensive therapeutic approach for ALS. To achieve an effective cell-mediated therapy suitable for clinical applications, several issues must be addressed, including the identification of the most performing cell source, a feasible administration protocol, and the definition of therapeutic mechanisms. The method of cell delivery represents a major issue in developing cell-mediated approaches since the cells, to be effective, need to be spread across the CNS, targeting both lower and upper motor neurons. On the other hand, there is the need to define a strategy that could provide a whole distribution without being too invasive or burdened by side effects. Here, we review the recent advances regarding the therapeutic potential of stem cells for ALS with a focus on the minimally invasive strategies that could facilitate an extensive translation to their clinical application.


Assuntos
Esclerose Lateral Amiotrófica/cirurgia , Transplante de Células-Tronco , Pesquisa Translacional Biomédica , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/terapia , Animais , Microambiente Celular , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Células-Tronco Embrionárias/transplante , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Injeções Espinhais , Transplante de Células-Tronco Mesenquimais , Neurônios Motores/patologia , Células-Tronco Neurais/transplante , Neurogênese , Neuroglia/fisiologia , Medula Espinal/patologia , Terapias em Estudo
7.
J Cell Mol Med ; 18(2): 187-96, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24400925

RESUMO

Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease. It is the first genetic cause of infant mortality. It is caused by mutations in the survival motor neuron 1 (SMN1) gene, leading to the reduction of SMN protein. The most striking component is the loss of alpha motor neurons in the ventral horn of the spinal cord, resulting in progressive paralysis and eventually premature death. There is no current treatment other than supportive care, although the past decade has seen a striking advancement in understanding of both SMA genetics and molecular mechanisms. A variety of disease modifying interventions are rapidly bridging the translational gap from the laboratory to clinical trials. In this review, we would like to outline the most interesting therapeutic strategies that are currently developing, which are represented by molecular, gene and stem cell-mediated approaches for the treatment of SMA.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Genética/métodos , Atrofia Muscular Espinal/terapia , Transplante de Células-Tronco , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Animais , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Lactente , Morfolinos/uso terapêutico , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Mutação , Oligonucleotídeos Antissenso/uso terapêutico , Medula Espinal/metabolismo , Medula Espinal/patologia , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
9.
Clin Park Relat Disord ; 10: 100251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645305

RESUMO

Introduction: Given the unique natural history of GBA-related Parkinson's disease (GBA-PD) and the potential for novel treatments in this population, genetic testing prioritization for the identification of GBA-PD patients is crucial for prognostication, individualizing treatment, and stratification for clinical trials. Assessing the predictive value of certain clinical traits for the GBA-variant carrier status will help target genetic testing in clinical settings where cost and access limit its availability. Methods: In-depth clinical characterization through standardized rating scales for motor and non-motor symptoms and self-reported binomial information of a cohort of subjects with PD (n = 100) from our center and from the larger cohort of the Parkinson's Progression Marker Initiative (PPMI) was utilized to evaluate the predictive values of clinical traits for GBA variant carrier status. The model was cross-validated across the two cohorts. Results: Leveraging non-motor symptoms of PD, we established successful discrimination of GBA variants in the PPMI cohort and study cohort (AUC 0.897 and 0.738, respectively). The PPMI cohort model successfully generalized to the study cohort data using both MDS-UPDRS scores and binomial data (AUC 0.740 and 0.734, respectively) while the study cohort model did not. Conclusions: We assessed the predictive value of non-motor symptoms of PD for identifying GBA carrier status in the general PD population. These data can be used to determine a simple, clinically oriented model using either the MDS-UPDRS or subjective symptom reporting from patients. Our results can inform patient counseling about the expected carrier risk and test prioritization for the expected identification of GBA variants.

10.
bioRxiv ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38854101

RESUMO

The G2019S mutation in the leucine-rich repeat kinase 2 (LRRK2) gene is a major risk factor for the development of Parkinson's disease (PD). LRRK2, although ubiquitously expressed, is highly abundant in cells of the innate immune system. Given the importance of central and peripheral immune cells in the development of PD, we sought to investigate the consequences of the G2019S mutation on microglial and monocyte transcriptome and function. We have generated large-scale transcriptomic profiles of isogenic human induced microglial cells (iMGLs) and patient derived monocytes carrying the G2019S mutation under baseline culture conditions and following exposure to the proinflammatory factors IFNγ and LPS. We demonstrate that the G2019S mutation exerts a profound impact on the transcriptomic profile of these myeloid cells, and describe corresponding functional differences in iMGLs. The G2019S mutation led to an upregulation in lipid metabolism and phagolysosomal pathway genes in untreated and LPS/IFNγ stimulated iMGLs, which was accompanied by an increased phagocytic capacity of myelin debris. We also identified dysregulation of cell cycle genes, with a downregulation of the E2F4 regulon. Transcriptomic characterization of human-derived monocytes carrying the G2019S mutation confirmed alteration in lipid metabolism associated genes. Altogether, these findings reveal the influence of G2019S on the dysregulation of the myeloid cell transcriptome under proinflammatory conditions.

11.
J Neurol Neurosurg Psychiatry ; 84(2): 183-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23138764

RESUMO

OBJECTIVES: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease mainly involving cortical and spinal motor neurones. Molecular studies have recently identified different mutations in the  ubiquilin-2 (UBQLN2) gene as causative of a familial form of X-linked ALS, 90% penetrant in women. The aim of our study was to analyse the UBQLN2 gene in a large cohort of patients with familial (FALS) and sporadic (SALS) amyotrophic lateral sclerosis, with or without frontotemporal dementia (FTD), and in patients with FTD. METHODS: We analysed the UBQLN2 gene in 819 SALS cases, 226 FALS cases, 53 ALS-FTD patients, and 63 patients with a clinical record of FTD. Molecular analysis of the entire coding sequence was carried out in all FALS and ALS-FTD patients, while SALS and FTD patients were analysed specifically for the genomic region coding for the PXX repeat tract. Healthy controls were 845 anonymous blood donors and were screened for the PXX repeat region only. RESULTS: We found five different variants in the UBQLN2 gene in five unrelated ALS patients. Three variants, including two novel ones, involved a proline residue in the PXX repeat region and were found in three FALS cases. The other two were novel variants, identified in one FALS and one SALS patient. None of these variants was present in controls, while one control carried a new heterozygous variant. CONCLUSIONS: Our data support the role of the UBQLN2 gene in the pathogenesis of FALS, being conversely a rare genetic cause in SALS even when complicated by FTD.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ciclo Celular/genética , Demência Frontotemporal/genética , Ubiquitinas/genética , Proteínas Adaptadoras de Transdução de Sinal , Esclerose Lateral Amiotrófica/complicações , Esclerose Lateral Amiotrófica/diagnóstico , Proteínas Relacionadas à Autofagia , Feminino , Demência Frontotemporal/complicações , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Mutação , População Branca/genética
12.
Exp Cell Res ; 318(13): 1528-41, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22426197

RESUMO

Generating neural stem cells and neurons from reprogrammed human astrocytes is a potential strategy for neurological repair. Here we show dedifferentiation of human cortical astrocytes into the neural stem/progenitor phenotype to obtain progenitor and mature cells with a neural fate. Ectopic expression of the reprogramming factors OCT4, SOX2, or NANOG into astrocytes in specific cytokine/culture conditions activated the neural stem gene program and induced generation of cells expressing neural stem/precursor markers. Pure CD44+ mature astrocytes also exhibited this lineage commitment change and did not require passing through a pluripotent state. These astrocyte-derived neural stem cells gave rise to neurons, astrocytes, and oligodendrocytes and showed in vivo engraftment properties. ASCL1 expression further promoted neuronal phenotype acquisition in vitro and in vivo. Methylation analysis showed that epigenetic modifications underlie this process. The restoration of multipotency from human astrocytes has potential in cellular reprogramming of endogenous central nervous system cells in neurological disorders.


Assuntos
Astrócitos/citologia , Astrócitos/metabolismo , Desdiferenciação Celular , Transdiferenciação Celular , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Animais , Desdiferenciação Celular/genética , Desdiferenciação Celular/fisiologia , Transdiferenciação Celular/genética , Transdiferenciação Celular/fisiologia , Células Cultivadas , Metilação de DNA , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Proteína Homeobox Nanog , Células-Tronco Neurais/transplante , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transplante Heterólogo
13.
Cell Mol Life Sci ; 69(10): 1641-50, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22094924

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease of motor neurons that causes progressive muscle weakness, paralysis, and premature death. No effective therapy is available. Research in the motor neuron field continues to grow, and recent breakthroughs have demonstrated the possibility of completely achieving rescue in animal models of spinal muscular atrophy, a genetic motor neuron disease. With adeno-associated virus (AAV) vectors, gene transfer can be achieved with systemic non-invasive injection and minimal toxicity. In the context of this success, we review gene therapy approaches for ALS, considering what has been done and the possible future directions for effective application of the latest generation of vectors for clinical translation. We focus on recent developments in the areas of RNA/antisense-mediated silencing of specific ALS causative genes like superoxide dismutase-1 and other molecular pathogenetic targets, as well as the administration of neuroprotective factors with viral vectors. We argue that gene therapy offers new opportunities to open the path for clinical progress in treating ALS.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Terapia Genética/tendências , Esclerose Lateral Amiotrófica/genética , Animais , Dependovirus , Modelos Animais de Doenças , Vetores Genéticos/uso terapêutico , Camundongos , Fármacos Neuroprotetores/uso terapêutico , Interferência de RNA , Ratos , Superóxido Dismutase/antagonistas & inibidores , Superóxido Dismutase/genética , Superóxido Dismutase-1
14.
Front Cell Neurosci ; 17: 1092488, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874214

RESUMO

Since its first identification as the gene responsible for spinal muscular atrophy (SMA), the range of survival motor neuron (SMN) protein functions has increasingly expanded. This multimeric complex plays a crucial role in a variety of RNA processing pathways. While its most characterized function is in the biogenesis of ribonucleoproteins, several studies have highlighted the SMN complex as an important contributor to mRNA trafficking and translation, axonal transport, endocytosis, and mitochondria metabolism. All these multiple functions need to be selectively and finely modulated to maintain cellular homeostasis. SMN has distinct functional domains that play a crucial role in complex stability, function, and subcellular distribution. Many different processes were reported as modulators of the SMN complex activities, although their contribution to SMN biology still needs to be elucidated. Recent evidence has identified post-translational modifications (PTMs) as a way to regulate the pleiotropic functions of the SMN complex. These modifications include phosphorylation, methylation, ubiquitination, acetylation, sumoylation, and many other types. PTMs can broaden the range of protein functions by binding chemical moieties to specific amino acids, thus modulating several cellular processes. Here, we provide an overview of the main PTMs involved in the regulation of the SMN complex with a major focus on the functions that have been linked to SMA pathogenesis.

15.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014079

RESUMO

Progressive supranuclear palsy (PSP) is a sporadic neurodegenerative tauopathy variably affecting brainstem and cortical structures and characterized by tau inclusions in neurons and glia. The precise mechanism whereby these protein aggregates lead to cell death remains unclear. To investigate the contribution of these different cellular abnormalities to PSP pathogenesis, we performed single-nucleus RNA sequencing and analyzed 45,559 high quality nuclei targeting the subthalamic nucleus and adjacent structures from human post-mortem PSP brains with varying degrees of pathology compared to controls. Cell-type specific differential expression and pathway analysis identified both common and discrete changes in numerous pathways previously implicated in PSP and other neurodegenerative disorders. This included EIF2 signaling, an adaptive pathway activated in response to diverse stressors, which was the top activated pathway in vulnerable cell types. Using immunohistochemistry, we found that activated eIF2α was positively correlated with tau pathology burden in vulnerable brain regions. Multiplex immunofluorescence localized activated eIF2α positivity to hyperphosphorylated tau (p-tau) positive neurons and ALDH1L1-positive astrocytes, supporting the increased transcriptomic EIF2 activation observed in these vulnerable cell types. In conclusion, these data provide insights into cell-type-specific pathological changes in PSP and support the hypothesis that failure of adaptive stress pathways play a mechanistic role in the pathogenesis and progression of PSP.

16.
Hum Mol Genet ; 19(19): 3782-96, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20650960

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive, fatal, neurodegenerative disease characterized by the loss of motor neurons. Motor neuron degeneration is probably both a cell autonomous and a non-autonomous event. Therefore, manipulating the diseased microenvironment via non-neural cell replacement could be a therapeutic strategy. We investigated a cell therapy approach using intravascular injection to transplant a specific population of c-kit(+) stem/progenitor cells from bone marrow into the SOD1G93A mouse model of ALS. Transplanted cells engrafted within the host spinal cord. Cell transplantation significantly prolonged disease duration and lifespan in superoxide dismutase 1 mice, promoted the survival of motor neurons and improved neuromuscular function. Neuroprotection was mediated by multiple effects, in particular by the expression of primary astrocyte glutamate transporter GLT1 and by the non-mutant genome. These findings suggest that this type of somatic cell transplantation strategy merits further investigation as a possible effective therapy for ALS and other neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Modelos Animais de Doenças , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transplante de Células-Tronco , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Esclerose Lateral Amiotrófica/enzimologia , Animais , Bioensaio , Vasos Sanguíneos/patologia , Células da Medula Óssea/citologia , Morte Celular , Separação Celular , Sobrevivência Celular , Técnicas de Cocultura , Espaço Extracelular/metabolismo , Glutamatos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Neurônios Motores/patologia , Proteínas Mutantes/metabolismo , Fenótipo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Análise de Sobrevida
17.
Artigo em Inglês | MEDLINE | ID: mdl-36618998

RESUMO

Background: Late-Onset Tay-Sachs (LOTS) disease is a rare, progressive neurological condition that can dramatically affect the life of these patients. The diagnosis of LOTS is easily missed because of the multifaced presentation of these patients, who can initially be assessed by neuromuscular or movement disorder specialists, or psychiatrists. Clinical trials are now becoming available for LOTS. Therefore, early diagnosis can be detrimental for these patients and for insuring informative research outcomes. Methods: We characterized a cohort of nine patients with LOTS through a detailed clinical and video description. We then reviewed the available literature regarding the clinical description of patients with LOTS. Our findings were summarized based on the predominant phenotype of presentation to highlight diagnostic clues to guide the diagnosis of LOTS for different neurology specialists (neuromuscular, movement disorders) and psychiatrist. Results: We described a cohort of 9 new patients with LOTS seen at our clinic. Our literature review identified 76 patients mainly presenting with a neuromuscular, cerebellar, psychiatric, stuttering, or movement disorder phenotype. Diagnostic tips, such as the triceps sign, distinct speech patterns, early psychiatric presentation and impulsivity, as well as neurological symptoms (cerebellar or neuromuscular) in patients with a prominent psychiatric presentation, are described. Discussion: Specific diagnostics clues can help neurologists and psychiatrists in the early diagnosis of LOTS disease. Our work also represent the first video presentation of a cohort of patients with LOTS that can help different specialists to familiarize with these features and improve diagnostic outcomes. Highlights: Late-Onset Tay-Sachs (LOTS) disease, a severe progressive neurological condition, has multifaced presentations causing diagnostic delays that can significantly affect research outcomes now that clinical trials are available. We highlight useful diagnostic clues from our cohort (including the first video representation of a LOTS cohort) and comprehensive literature review.


Assuntos
Transtornos dos Movimentos , Doença de Tay-Sachs , Humanos , Doença de Tay-Sachs/diagnóstico , Doença de Tay-Sachs/genética , Doença de Tay-Sachs/psicologia , Fenótipo , Músculo Esquelético , Cerebelo
18.
Int Rev Neurobiol ; 163: 7-29, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35750371

RESUMO

It is now well-established that essential tremor (ET) can manifest with different clinical presentations and progressions (i.e., upper limb tremor, head tremor, voice tremor, lower limb tremor, task- or position-specific tremor, or a combination of those). Common traits and overlaps are identifiable across these different subtypes of ET, including a slow rate of progression, a response to alcohol and a positive family history. At the same time, each of these manifestations are associated with specific demographic, clinical and treatment-response characteristics suggesting a family of diseases rather than a spectrum of a syndrome. Here we summarize the most important clinical, demographic, neuropathological and imagingfeatures of ET and of its subtypes to support ET as a family of identifiable conditions. This classification has relevance for counseling of patients with regard to disease progression and treatment response, as well as for the design of therapeutic clinical trials.


Assuntos
Tremor Essencial , Tremor Essencial/diagnóstico , Tremor Essencial/terapia , Humanos , Síndrome , Tremor
19.
Artigo em Inglês | MEDLINE | ID: mdl-35949226

RESUMO

Background: Variants of the NUS1 gene have recently been linked to a spectrum of phenotypes including epilepsy, cerebellar ataxia, cortical myoclonus and intellectual disability (ID), and primary congenital defects of glycosylation. Case Report: We report a case of myoclonus epilepsy, mild cerebellar ataxia, and ID due to a new de-novo NUS1 missense variant (c.868C>T, p.R290C), and review the current literature of NUS1-associated clinical phenotypes. Discussion: Pathogenic variants of NUS1 are found in a rapidly growing number of cases diagnosed with myoclonus epilepsy and/or myoclonus-ataxia syndrome. NUS1 should be included in the genetic screening of undiagnosed forms of myoclonus, myoclonus-ataxia, and progressive myoclonus epilepsies.


Assuntos
Ataxia Cerebelar , Epilepsias Mioclônicas , Epilepsia , Deficiência Intelectual , Mioclonia , Ataxia/genética , Ataxia Cerebelar/genética , Epilepsia/complicações , Epilepsia/genética , Humanos , Deficiência Intelectual/genética , Mioclonia/genética , Receptores de Superfície Celular
20.
NPJ Parkinsons Dis ; 8(1): 110, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042235

RESUMO

Non-motor symptoms of Parkinson's disease (PD) such as dysautonomia and REM sleep behavior disorder (RBD) are recognized to be important prodromal symptoms that may also indicate clinical subtypes of PD with different pathogenesis. Unbiased clustering analyses showed that subjects with dysautonomia and RBD symptoms, as well as early cognitive dysfunction, have faster progression of the disease. Through analysis of the Parkinson's Progression Markers Initiative (PPMI) de novo PD cohort, we tested the hypothesis that symptoms of dysautonomia and RBD, which are readily assessed by standard questionnaires in an ambulatory care setting, may help to independently prognosticate disease progression. Although these two symptoms associate closely, dysautonomia symptoms predict severe progression of motor and non-motor symptoms better than RBD symptoms across the 3-year follow-up period. Autonomic system involvement has not received as much attention and may be important to consider for stratification of subjects for clinical trials and for counseling patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA