Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PeerJ ; 10: e13874, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979477

RESUMO

Soil microbial transformation of nitrogen (N) in nutrient-limited native C4 grasslands can be affected by N fertilization rate and C4 grass species. Here, we report in situ dynamics of the population size (gene copy abundances) and activity (transcript copy abundances) of five functional genes involved in soil N cycling (nifH, bacterial amoA, nirK, nirS, and nosZ) in a field experiment with two C4 grass species (switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii)) under three N fertilization rates (0, 67, and 202 kg N ha-1). Diazotroph (nifH) abundance and activity were not affected by N fertilization rate nor grass species. However, moderate and high N fertilization promoted population size and activity of ammonia oxidizing bacteria (AOB, quantified via amoA genes and transcripts) and nitrification potential. Moderate N fertilization increased abundances of nitrite-reducing bacterial genes (nirK and nirS) under switchgrass but decreased these genes under big bluestem. The activity of nitrous oxide reducing bacteria (nosZ transcripts) was also promoted by moderate N fertilization. In general, high N fertilization had a negative effect on N-cycling populations compared to moderate N addition. Compared to big bluestem, the soils planted with switchgrass had a greater population size of AOB and nitrite reducers. The significant interaction effects of sampling season, grass species, and N fertilization rate on N-cycling microbial community at genetic-level rather than transcriptional-level suggested the activity of N-cycling microbial communities may be driven by more complex environmental factors in native C4 grass systems, such as climatic and edaphic factors.


Assuntos
Pradaria , Ureia , Poaceae , Nitritos , Bactérias/genética , Solo , Nitrogênio/farmacologia , Fertilização
2.
Front Microbiol ; 12: 675693, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305840

RESUMO

Native C4 grasses have become the preferred species for native perennial pastures and bioenergy production due to their high productivity under low soil nitrogen (N) status. One reason for their low N requirement is that C4 grasses may benefit from soil diazotrophs and promote biological N fixation. Our objective was to evaluate the impact of N fertilization rates (0, 67, and 202 kg N ha-1) and grass species (switchgrass [Panicum virgatum] and big bluestem [Andropogon gerardii]) on the abundance, activity, diversity, and community composition of soil diazotrophs over three agricultural seasons (grass green-up, initial harvest, and second harvest) in a field experiment in East Tennessee, United States. Nitrogen fertilization rate had a stronger influence on diazotroph population size and activity (determined by nifH gene and transcript abundances) and community composition (determined by nifH gene amplicon sequencing) than agricultural season or grass species. Excessive fertilization (202 kg N ha-1) resulted in fewer nifH transcripts compared to moderate fertilization (67 kg N ha-1) and decreased both richness and evenness of diazotrophic community, reflecting an inhibitory effect of high N application rates on soil diazotrophic community. Overall, cluster I and cluster III diazotrophs were dominant in this native C4 grass system. Diazotroph population size and activity were directly related to soil water content (SWC) based on structural equation modeling. Soil pH, SWC, and C and N availability were related to the variability of diazotrophic community composition. Our results revealed relationships between soil diazotrophic community and associated soil properties, adding to our understanding of the response of soil diazotrophs to N fertilization and grass species in native C4 grass systems.

3.
PeerJ ; 9: e12592, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003922

RESUMO

BACKGROUND: Fertilizer addition can contribute to nitrogen (N) losses from soil by affecting microbial populations responsible for nitrification. However, the effects of N fertilization on ammonia oxidizing bacteria under C4 perennial grasses in nutrient-poor grasslands are not well studied. METHODS: In this study, a field experiment was used to assess the effects of N fertilization rate (0, 67, and 202 kg N ha-1) and grass species (switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii)) on ammonia-oxidizing bacterial (AOB) communities in C4 grassland soils using quantitative PCR, quantitative reverse transcription-PCR, and high-throughput amplicon sequencing of amoA genes. RESULTS: Nitrosospira were dominant AOB in the C4 grassland soil throughout the growing season. N fertilization rate had a stronger influence on AOB community composition than C4 grass species. Elevated N fertilizer application increased the abundance, activity, and alpha-diversity of AOB communities as well as nitrification potential, nitrous oxide (N2O) emission and soil acidity. The abundance and species richness of AOB were higher under switchgrass compared to big bluestem. Soil pH, nitrate, nitrification potential, and N2O emission were significantly related to the variability in AOB community structures (p < 0.05).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA