Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35457199

RESUMO

Redox status and inflammation are related to the pathogenesis of the majority of diseases. Therefore, understanding the role of specific food-derived molecules in the regulation of their specific pathways is a relevant issue. Our previous studies indicated that K-8-K and S-10-S, milk and soy-derived bioactive peptides, respectively, exert antioxidant effects through activation of the Keap1/Nrf2 pathway. A crosstalk between Nrf2 and NF-κB, mediated by the action of heme oxygenase (HO-1), is well known. On this basis, we studied if these peptides, in addition to their antioxidant activity, could exert anti-inflammatory effects in human cells. First, we observed an increase of HO-1 expression in Caco-2 cells treated with K-8-K and S-10-S, following the activation of the Keap1/Nrf2 pathway. Moreover, when cells are treated with the two peptides and stimulated by TNF-α, the levels of NF-κB in the nucleus decreased in comparison with TNF-α alone. In the same conditions, we observed the downregulation of the gene expression of proinflammatory cytokines (IL1B, IL6, and TNF), while the anti-inflammatory cytokine gene, IL1RN, was upregulated in Caco-2 cells processed as reported above. Then, when the cells were pretreated with the two peptides and stimulated with LPS, a different proinflammatory factor, (TNF-α) was estimated to have a lower secretion in the supernatant of cells. In conclusion, these observations confirmed that Nrf2-activating bioactive peptides, K-8-K and S-10-S, exerted anti-inflammatory effects by inhibiting the NF-κB pathway.


Assuntos
Fator 2 Relacionado a NF-E2 , NF-kappa B , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Células CACO-2 , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lipopolissacarídeos/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
2.
J Pept Sci ; 25(5): e3162, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30859695

RESUMO

Milk is a nutritionally important source of bioactive peptides with anti-inflammatory, immunomodulatory, anticancer, and antioxidant properties. These compounds can be useful as ingredients of functional food. For this reason, in the last decades, bioactive peptides attracted the interest of researchers and food companies. In this work, the results obtained with six milk-derived bioactive peptides (Y-4-R, V-6-R, V-7-K, A-10-F, R-10-M, and H-9-M) synthesized and studied for their antioxidant properties in vitro and in a cellular model, are reported. These molecules correspond to peptide fragments derived from parent compounds able to cross the apical membrane of Caco-2 cell layer and released in the basolateral compartment. In vitro, antioxidant tests such as 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and crocin bleaching showed antioxidant activity mainly for peptides Y-4-R and V-6-R, respectively. In Caco-2 cells, peptides V-6-R, H-9-R, Y-4-R, and particularly R-10-M and V-7-K are able to prevent the decrease of viability due to oxidative stress. The latter peptide is also the most effective in protecting cells from lipid peroxidation. In conclusion, the reported hydrolyzed peptides are shown to exert the antioxidant properties both in vitro and in a cellular model.


Assuntos
Antioxidantes/farmacologia , Benzotiazóis/antagonistas & inibidores , Compostos de Bifenilo/antagonistas & inibidores , Leite/química , Modelos Biológicos , Peptídeos/farmacologia , Picratos/antagonistas & inibidores , Ácidos Sulfônicos/antagonistas & inibidores , Animais , Antioxidantes/síntese química , Antioxidantes/química , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Biologia Computacional , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Peptídeos/síntese química , Peptídeos/química , Conformação Proteica
3.
Plant Foods Hum Nutr ; 74(3): 287-292, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31098881

RESUMO

Glycine max (soybean) is a fundamental food in human nutrition, largely utilized by the consumers, and in particular, fermented soy is mainly used. However, health benefits of the products can change during the shelf life as oxidation processes occur determining alterations of protein and lipid constituents leading to a decrease of nutritional quality. Therefore, the oxidative stability of the fermented soy during the shelf life was studied. The antioxidant potential of this product was evaluated by estimating total phenols, free radical scavenger activity using DPPH and ABTS tests, and the degree of lipid peroxidation, from I up to IX weeks. The antioxidant capacity after an initial decrease, increased again at VII-IX weeks. Lipid peroxidation was evaluated by comparing non fermented and fermented soy. The results disclosed a low amount of peroxides in the fermented soy, suggesting that fermentation brings to an improvement of the product associated to a decreased lipid peroxidation at longer times. Fractions of aqueous extract, obtained at the end of the shelf life from fermented soy, showed an enrichment in antioxidant peptides.


Assuntos
Antioxidantes/análise , Glycine max/química , Alimentos de Soja/análise , Fermentação , Armazenamento de Alimentos , Humanos , Peroxidação de Lipídeos , Valor Nutritivo , Oxirredução , Fenóis/análise
4.
Inorg Chem ; 56(22): 14237-14250, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29095609

RESUMO

We report here on the synthesis of a series of mono- and dinuclear gold(I) complexes exhibiting sulfonated bis(NHC) ligands and novel hydroxylated mono(NHC) Au(I) compounds, which were also examined for their biological activities. Initial cell viability assays show strong antiproliferative activities of the hydroxylated mono(NHC) gold compounds (8 > 9 > 10) against 2008 human ovarian cancer cells even after 1 h incubation. In order to gain insight into the mechanism of biological action of the gold compounds, their effect on the pivotal cellular target seleno-enzyme thioredoxin reductase (TrxR), involved in the maintenance of intracellular redox balance, was investigated in depth. The compounds' inhibitory effects on TrxR and glutathione reductase (GR) were studied comparatively, using either the pure proteins or cancer cell extracts. The results show a strong and selective inhibitory effect of TrxR, specifically for the hydroxyl-functionalized NHC gold(I) complexes (8-10). Valuable information on the gold compounds' molecular reactivity with TrxR was gained using the BIAM (biotin-conjugated iodoacetamide) assay and performing competition experiments by mass spectrometry (MS). In good agreement, both techniques suggest the binding affinity of the mono(NHC) Au(I) complexes toward selenols and thiols. Notably, for the first time, bis-carbene formation from mono-carbenes in buffered solution could be observed by MS, which may provide new insights into the speciation mechanisms of bioactive Au(I) NHC complexes. Furthermore, the compounds' interactions with another relevant in cellulo target, namely telomeric G-quadruplex DNA-a higher-order DNA structure playing key roles in telomere function-was investigated by means of FRET melting assays. The lack of interactions with this type of nucleic acid secondary structure support the idea of selective targeting of the hydrophilic Au(I) NHC compounds toward proteins such as TrxR.


Assuntos
Complexos de Coordenação/farmacologia , Ouro/química , Tiorredoxina Redutase 1/antagonistas & inibidores , Tiorredoxina Redutase 2/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , DNA/metabolismo , Estabilidade de Medicamentos , Quadruplex G , Glutationa Redutase/antagonistas & inibidores , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Compostos Organoáuricos/química , Ratos , Espécies Reativas de Oxigênio/metabolismo , Prata/química , Solubilidade
5.
Bioorg Med Chem ; 25(20): 5452-5460, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28823538

RESUMO

A family of cyclometalated Au(III) complexes featuring a tridentate C^N^C scaffold has been synthesized and characterized. Microwave assisted synthesis of the ligands has also been exploited and optimized. The biological properties of the thus formed compounds have been studied in cancer cells and demonstrate generally moderate antiproliferative effects. Initial mechanistic insights have also been gained on the gold complex [Au(C^N^C)(GluS)] (3), and support the idea that the thioredoxin system may be a target for this family of compounds together with other relevant intracellular thiol-containing molecules.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Compostos Organoáuricos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Compostos Organoáuricos/síntese química , Compostos Organoáuricos/química , Oxirredução , Relação Estrutura-Atividade , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Tiorredoxina Dissulfeto Redutase/metabolismo
6.
J Biol Inorg Chem ; 20(6): 1005-20, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26202908

RESUMO

While N-heterocyclic carbenes (NHC) are ubiquitous ligands in catalysis for organic or industrial syntheses, their potential to form transition metal complexes for medicinal applications has still to be exploited. Within this frame, we synthesized new homo- and heterobimetallic complexes based on the Au(I)-NHC scaffold. The compounds were synthesized via a microwave-assisted method developed in our laboratories using Au(I)-NHC complexes carrying a pentafluorophenol ester moiety and another Au(I) phosphane complex or a bipyridine ligand bearing a pendant amine function. Thus, we developed two different methods to prepare homo- and heterobimetallic complexes (Au(I)/Au(I) or Au(I)/Cu(II), Au(I)/Ru(II), respectively). All the compounds were fully characterized by several spectroscopic techniques including far infrared, and were tested for their antiproliferative effects in a series of human cancer cells. They showed moderate anticancer properties. Their toxic effects were also studied ex vivo using the precision-cut tissue slices (PCTS) technique and initial results concerning their reactivity with the seleno-enzyme thioredoxin reductase were obtained.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/uso terapêutico , Compostos Organoáuricos/síntese química , Tioglucosídeos/síntese química , Tioglucosídeos/uso terapêutico , Animais , Linhagem Celular Tumoral , Cobre , Glutationa Redutase/antagonistas & inibidores , Humanos , Compostos Organoáuricos/uso terapêutico , Ratos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae , Tiorredoxina Redutase 1/antagonistas & inibidores , Tiorredoxina Redutase 2/antagonistas & inibidores
7.
Food Chem ; 439: 138124, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38064839

RESUMO

The evolving field of food technology is increasingly dedicated to developing functional foods. This study explored bioactive peptides from sunflower protein isolate (SPI), obtained from defatted flour, a by-product of the oil processing industry. SPI underwent simulated gastrointestinal digestion and the obtained peptide-enriched fraction (PEF) showed antioxidant properties in vivo, in zebrafish. Among the peptides present in PEF identified by mass spectrometry analysis, we selected those with antioxidant properties by in silico evaluation, considering their capability to interact with Keap1, key protein in the regulation of antioxidant response. The selected peptides were synthesized and evaluated in a cellular model. As a result, DVAMPVPK, VETGVIKPG, TTHTNPPPEAE, LTHPQHQQQGPSTG and PADVTPEEKPEV activated Keap1/Nrf2 pathway leading to Antioxidant Response Element-regulated enzymes upregulation. Since the crosstalk between Nrf2 and NF-κB is well known, the potential anti-inflammatory activity of the peptides was assessed and principally PADVTPEEKPEV showed good features both as antioxidant and anti-inflammatory molecule.


Assuntos
Antioxidantes , Helianthus , Animais , Antioxidantes/química , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Helianthus/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Peixe-Zebra/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo , Anti-Inflamatórios/farmacologia , Modelos Animais , Simulação por Computador
8.
Antioxidants (Basel) ; 12(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36978913

RESUMO

The increasing need to counteract the redox imbalance in chronic diseases leads to focusing research on compounds with antioxidant activity. Among natural molecules with health-promoting effects on many body functions, bioactive peptides are gaining interest. They are protein fragments of 2-20 amino acids that can be released by various mechanisms, such as gastrointestinal digestion, food processing and microbial fermentation. Recent studies report the effects of bioactive peptides in the cellular environment, and there is evidence that these compounds can exert their action by modulating specific pathways. This review focuses on the newest approaches to the structure-function correlation of the antioxidant bioactive peptides, considering their molecular mechanism, by evaluating the activation of specific signaling pathways that are linked to antioxidant systems. The correlation between the results of in silico molecular docking analysis and the effects in a cellular model was highlighted. This knowledge is fundamental in order to propose the use of bioactive peptides as ingredients in functional foods or nutraceuticals.

9.
J Med Chem ; 66(14): 9823-9841, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37410388

RESUMO

Two new 'hybrid' metallodrugs of Au(III) (AuTAML) and Cu(II) (CuTAML) were designed featuring a tamoxifen-derived pharmacophore to ideally synergize the anticancer activity of both the metal center and the organic ligand. The compounds have antiproliferative effects against human MCF-7 and MDA-MB 231 breast cancer cells. Molecular dynamics studies suggest that the compounds retain the binding activity to estrogen receptor (ERα). In vitro and in silico studies showed that the Au(III) derivative is an inhibitor of the seleno-enzyme thioredoxin reductase, while the Cu(II) complex may act as an oxidant of different intracellular thiols. In breast cancer cells treated with the compounds, a redox imbalance characterized by a decrease in total thiols and increased reactive oxygen species production was detected. Despite their different reactivities and cytotoxic potencies, a great capacity of the metal complexes to induce mitochondrial damage was observed as shown by their effects on mitochondrial respiration, membrane potential, and morphology.


Assuntos
Antineoplásicos , Neoplasias da Mama , Complexos de Coordenação , Humanos , Feminino , Tamoxifeno/metabolismo , Complexos de Coordenação/química , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Mitocôndrias , Receptores de Estrogênio/metabolismo , Linhagem Celular Tumoral
10.
J Cell Mol Med ; 16(7): 1593-605, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22003958

RESUMO

The thioredoxin system is a promising target when aiming to overcome the problem of clinical radiation resistance. Altered cellular redox status and redox sensitive thiols contributing to induction of resistance strongly connect the ubiquitous redox enzyme thioredoxin reductase (TrxR) to the cellular response to ionizing radiation. To further investigate possible strategies in combating clinical radiation resistance, human radio-resistant lung cancer cells were subjected to a combination of single fractions of γ-radiation at clinically relevant doses and non-toxic levels of a well-characterized thioredoxin reductase inhibitor, the phosphine gold(I) compound [Au(SCN)(PEt(3))]. The combination of the TrxR-inhibitor and ionizing radiation reduced the surviving fractions and impaired the ability of the U1810 cells to repopulate by approximately 50%. In addition, inhibition of thioredoxin reductase caused changes in the cell cycle distribution, suggesting a disturbance of the mitotic process. Global gene expression analysis also revealed clustered genetic expression changes connected to several major cellular pathways such as cell cycle, cellular response to stress and DNA damage. Specific TrxR-inhibition as a factor behind the achieved results was confirmed by correlation of gene expression patterns between gold and siRNA treatment. These results clearly demonstrate TrxR as an important factor conferring resistance to irradiation and the use of [Au(SCN)(PEt(3))] as a promising radiosensitizing agent.


Assuntos
Compostos de Ouro/farmacologia , Tolerância a Radiação , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Regulação para Cima , Western Blotting , Ciclo Celular/efeitos da radiação , Linhagem Celular , Humanos , Neoplasias Pulmonares/patologia , Oxirredução , Fosfinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Radiação Ionizante , Tiorredoxina Dissulfeto Redutase/metabolismo
11.
Arch Biochem Biophys ; 517(1): 30-6, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22100759

RESUMO

The effects of selenite and tellurite on the mammalian enzyme lipoamide dehydrogenase were compared. Selenite acts as a substrate of lipoamide dehydrogenase in a process requiring the presence of lipoamide. In contrast, tellurite is a potent inhibitor, effective in the low micromolar range. The inhibitory effect of tellurite on lipoamide dehydrogenase is partially reverted by dithiothreitol indicating the participation of the thiol groups of the enzyme. Tellurite, but not selenite, stimulates the diaphorase activity of lipoamide dehydrogenase. In a mitochondrial matrix protein preparation, which contains lipoamide dehydrogenase, an inhibitory action similar to that observed on the purified enzyme was also elicited by tellurite. Human embryonic kidney cells (HEK 293 T) treated with tellurite show a partial inhibition of lipoamide dehydrogenase. In addition to the toxicological implications of tellurium compounds, the reported results suggest that tellurite and its derivatives can be used as potential tools for studying biochemical reactions.


Assuntos
Di-Hidrolipoamida Desidrogenase/antagonistas & inibidores , Di-Hidrolipoamida Desidrogenase/metabolismo , Ativadores de Enzimas/farmacologia , Selenito de Sódio/farmacologia , Telúrio/farmacologia , Animais , Ativadores de Enzimas/química , Células HEK293 , Humanos , Oxirredução , Selenito de Sódio/química , Compostos de Sulfidrila/metabolismo , Suínos , Telúrio/química
12.
Antioxidants (Basel) ; 11(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35453299

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the loss of motor neurons in the brain and spinal cord. While the exact causes of ALS are still unclear, the discovery that familial cases of ALS are related to mutations in the Cu/Zn superoxide dismutase (SOD1), a key antioxidant enzyme protecting cells from the deleterious effects of superoxide radicals, suggested that alterations in SOD1 functionality and/or aberrant SOD1 aggregation strongly contribute to ALS pathogenesis. A new scenario was opened in which, thanks to the generation of SOD1 related models, different mechanisms crucial for ALS progression were identified. These include excitotoxicity, oxidative stress, mitochondrial dysfunctions, and non-cell autonomous toxicity, also implicating altered Ca2+ metabolism. While most of the literature considers motor neurons as primary target of SOD1-mediated effects, here we mainly discuss the effects of SOD1 mutations in non-neuronal cells, such as glial and skeletal muscle cells, in ALS. Attention is given to the altered redox balance and Ca2+ homeostasis, two processes that are strictly related with each other. We also provide original data obtained in primary myocytes derived from hSOD1(G93A) transgenic mice, showing perturbed expression of Ca2+ transporters that may be responsible for altered mitochondrial Ca2+ fluxes. ALS-related SOD1 mutants are also responsible for early alterations of fundamental biological processes in skeletal myocytes that may impinge on skeletal muscle functions and the cross-talk between muscle cells and motor neurons during disease progression.

13.
Redox Biol ; 51: 102277, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35290904

RESUMO

Glutaredoxin 2 (Grx2) is a glutathione-dependent oxidoreductase that facilitates glutathionylation/de-glutathionylation of target proteins. The main variants of Grx2 are the mitochondrial Grx2a and the cytosolic Grx2c. The aim of this study was to investigate the specific role of mitochondrial Grx2 in vivo using a mitochondrial Grx2 depleted (mGD) mouse model. mGD mice displayed an altered mitochondrial morphology and functioning. Furthermore, the lack of Grx2 in the mitochondrial compartment is responsible for increased blood lipid levels under a normal diet, a metabolic dysfunction-associated fatty liver disease (MAFLD) phenotype and a decreased glycogen storage capacity. In addition, depleting Grx2a leads to an alteration in abundance and in glutathionylation pattern of different mitochondrial enzymes, highlighting the selective role of Grx2 in the regulation of metabolic pathways. Overall, our findings identify the involvement of mitochondrial Grx2a in the regulation of cell metabolism and highlight a previously unknown association between Grx2 and MAFLD.


Assuntos
Glutarredoxinas , Hepatopatias , Animais , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Hepatopatias/metabolismo , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas/metabolismo
14.
Invest New Drugs ; 29(6): 1213-23, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20567997

RESUMO

Over the last few years a lot of research has been done to develop novel metal-based anti-cancer drugs, with the aim of improving clinical effectiveness, reducing general toxicity, and broadening the spectrum of activity. The search for novel metal-based antitumour drugs other than Pt agents includes the investigation of the cytotoxic activity of copper(I/II) compounds. Among these copper agents, particular attention has been recently devoted to hydrophilic copper(I) species bearing phosphines because of their noteworthy stability in aqueous media together with their remarkable in vitro cytotoxic activity. In this study we report on the synthesis, characterization and cytotoxic assays of a series of Cu(I) complexes with tris(2-cyanoethyl)phosphine (PCN) and bis(2-cyanoethyl)phenylphosphine (PCNPh). They were prepared by reaction of [Cu(CH(3)CN)(4)](+) or CuX(2) precursors with the pertinent phosphine in acetone or acetonitrile solutions producing compounds of the following formulation: [Cu(PCN)(2)](+) 2, [Cu(CH(3)CN)(PCN)](+) 3, [Cu(X)(PCN)] (X = Cl, 4; Br, 5), and [Cu(PCNPh)(2)](+) 6. The new copper(I) complexes were tested for their cytotoxic properties against a panel of several human tumour cell lines. Cellular copper uptake rate was correlated with cell growth inhibition in 2008 human ovarian cancer cells. Moreover, copper(I)-PCN complexes were evaluated for their ability to alter the most relevant mitochondrial pathophysiological parameters such as respiration, coupling, ATP-synthetase activity and membrane potential in isolated mitochondria. These data were correlated with changes in mitochondrial membrane potential and production of reactive oxygen species (ROS) in drug-treated 2008 cells.


Assuntos
Antineoplásicos/farmacologia , Cobre/química , Neoplasias/tratamento farmacológico , Fosfinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Neoplasias/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Fosfinas/síntese química , Fosfinas/química , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
15.
Bioorg Med Chem ; 19(1): 631-41, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21106380

RESUMO

Cytosolic (TrxR1) and mitochondrial (TrxR2) thioredoxin reductases experience pronounced concentration- and time-dependent inhibition when incubated with the two naphthodianthrones hypericin and pseudohypericin. Pseudohypericin turned out to be a quite strong inhibitor of TrxR1 (IC(50)=4.40µM) being far more effective than hypericin (IC(50)=157.08µM). In turn, the IC(50) values measured toward TrxR2 were 7.45µM for pseudohypericin and 43.12µM for hypericin. When compared to pseudohypericin, the inhibition caused by hypericin usually required significantly longer times, in particular on TrxR1. These important differences in the inhibitory potencies and profiles were analysed through a molecular modeling approach. Notably, both compounds were found to accommodate in the NADPH-binding pocket of the enzyme. The binding of the two naphthodianthrones to thioredoxin reductase seems to be particularly strong as the inhibitory effects were fully retained after gel filtration. Also, we found that TrxR inhibition by hypericin and pseudohypericin does not involve the active site selenol/thiol motif as confirmed by biochemical and modeling studies. The resulting inhibition pattern is very similar to that produced by the two naphthodianthrones on glutathione reductase. As the thioredoxin system is highly overexpressed in cancer cells, its inhibition by hypericin and pseudohypericin, natural compounds showing appreciable anticancer properties, might offer new clues on their mechanism of action and open interesting perspectives for future tumor therapies.


Assuntos
Antracenos/farmacologia , Perileno/análogos & derivados , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Sequência de Aminoácidos , Concentração Inibidora 50 , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Perileno/farmacologia , Homologia de Sequência de Aminoácidos , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxina Dissulfeto Redutase/metabolismo
16.
ChemMedChem ; 16(12): 1956-1966, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33751814

RESUMO

Resistance to platinum-based anticancer drugs represents an important limit for their clinical effectiveness and one of the most important field of investigation in the context of platinum compounds. From our previous studies, PtII complexes containing the triphenylphosphino moiety have been emerging as promising agents, showing significant cytotoxicity to resistant ovarian carcinoma cells. Two brominated triphenylphosphino trans-platinum derivatives were prepared and evaluated on human tumor cell lines, sensitive and resistant to cisplatin. The new complexes exert a notable antiproliferative effect on resistant ovarian carcinoma cells, showing a remarkable intracellular accumulation and the ability to interact with different intracellular targets. The interaction with DNA, the collapse of mitochondrial transmembrane potential, and the impairment of intracellular redox state were demonstrated. Moreover, a selectivity towards the selenocysteine of thioredoxin reductase was observed. The mechanism of action is discussed with regard to the resistance phenomenon in ovarian carcinoma cells.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Compostos Organoplatínicos/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Neoplasias Ovarianas/patologia , Células Tumorais Cultivadas
17.
Antioxid Redox Signal ; 34(7): 531-550, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32524823

RESUMO

Aims: Doxorubicin cardiomyopathy is a lethal pathology characterized by oxidative stress, mitochondrial dysfunction, and contractile impairment, leading to cell death. Although extensive research has been done to understand the pathophysiology of doxorubicin cardiomyopathy, no effective treatments are available. We investigated whether monoamine oxidases (MAOs) could be involved in doxorubicin-derived oxidative stress, and in the consequent mitochondrial, cardiomyocyte, and cardiac dysfunction. Results: We used neonatal rat ventricular myocytes (NRVMs) and adult mouse ventricular myocytes (AMVMs). Doxorubicin alone (i.e., 0.5 µM doxorubicin) or in combination with H2O2 induced an increase in mitochondrial formation of reactive oxygen species (ROS), which was prevented by the pharmacological inhibition of MAOs in both NRVMs and AMVMs. The pharmacological approach was supported by the genetic ablation of MAO-A in NRVMs. In addition, doxorubicin-derived ROS caused lipid peroxidation and alterations in mitochondrial function (i.e., mitochondrial membrane potential, permeability transition, redox potential), mitochondrial morphology (i.e., mitochondrial distribution and perimeter), sarcomere organization, intracellular [Ca2+] homeostasis, and eventually cell death. All these dysfunctions were abolished by MAO inhibition. Of note, in vivo MAO inhibition prevented chamber dilation and cardiac dysfunction in doxorubicin-treated mice. Innovation and Conclusion: This study demonstrates that the severe oxidative stress induced by doxorubicin requires the involvement of MAOs, which modulate mitochondrial ROS generation. MAO inhibition provides evidence that mitochondrial ROS formation is causally linked to all disorders caused by doxorubicin in vitro and in vivo. Based upon these results, MAO inhibition represents a novel therapeutic approach for doxorubicin cardiomyopathy.


Assuntos
Doxorrubicina/farmacologia , Ventrículos do Coração/efeitos dos fármacos , Monoaminoxidase/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Ventrículos do Coração/metabolismo , Camundongos , Mitocôndrias , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/análise
18.
ChemMedChem ; 15(15): 1464-1472, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32490604

RESUMO

Platinum(II) complexes of the type [Pt(Cl)(PPh3 ){(κ2 -N,O)-(1{C(R)=N(OH)-2(O)C6 H4 })}] with R=Me, H, (1 and 2) were synthesized and characterized. Single-crystal X-ray diffraction confirmed the proposed (SP4-3) configuration for 1. Study of the antiproliferative activity, performed on a panel of human tumor cell lines and on mesothelial cells, highlighted complex 2 as the more effective. In particular, it showed a remarkable cytotoxicity in ovarian carcinoma cells (A2780) and interestingly, a significant antiproliferative effect on cisplatin resistant cells (A2780cis). Investigation into the intracellular mechanism of action demonstrated that 2 had a lower ability to platinate DNA than did cisplatin, which was taken as reference, and a notably higher uptake in resistant cells. A significant accumulation in mitochondria, along with the ability to induce concentration-dependent mitochondrial membrane depolarization and intracellular reactive oxygen species production, allowed us to propose a mitochondrion-mediated pathway as responsible for the interesting cytotoxic profile of complex 2.


Assuntos
Antineoplásicos/farmacologia , Quelantes/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Compostos Organofosforados/farmacologia , Compostos Organoplatínicos/farmacologia , Oximas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Quelantes/síntese química , Quelantes/química , DNA/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Compostos Organofosforados/química , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Oximas/química , Espécies Reativas de Oxigênio/metabolismo , Salmão , Relação Estrutura-Atividade , Testículo/química
19.
Antioxidants (Basel) ; 9(12)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352784

RESUMO

Bioactive peptides are a group of molecules with health beneficial properties, deriving from food matrices. They are protein fragments consisting of 2-20 amino acids that can be released by microbial fermentation, food processing and gastrointestinal digestion. Once hydrolyzed from their native proteins, they can have different functions including antioxidant activity, which is important for cell protection by oxidant agents. In this work, fermented soy products were digested in vitro in order to improve the release of bioactive peptides. These were extracted, purified and analyzed in vitro and in a cellular model to assess their antioxidant activity. Peptide sequences were identified by LC-MS/MS analysis and a molecular docking approach was used to predict their ability to interact with Keap1, one of the key proteins of the Keap1/Nrf2 pathway, the major system involved in redox regulation. Peptides showing a high score of interaction were selected and tested for their antioxidant properties in a cellular environment using the Caco-2 cell line and examined for their capability to defend cells against oxidative stress. Our results indicate that several of the selected peptides were indeed able to activate the Keap1/Nrf2 pathway with the consequent overexpression of antioxidant and phase II enzymes.

20.
Antioxidants (Basel) ; 9(2)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013158

RESUMO

Due to their beneficial properties, fermented foods are considered important constituents of the human diet. They also contain bioactive peptides, health-promoting compounds studied for a wide range of effects. In this work, several antioxidant peptides extracted from fermented milk proteins were investigated. First, enriched peptide fractions were purified and analysed for their antioxidant capacity in vitro and in a cellular model. Subsequently, from the most active fractions, 23 peptides were identified by mass spectrometry MS/MS), synthesized and tested. Peptides N-15-M, E-11-F, Q-14-R and A-17-E were selected for their antioxidant effects on Caco-2 cells both in the protection against oxidative stress and inhibition of ROS production. To define their action mechanism, the activation of the Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2(Keap1/Nrf2) pathway was studied evaluating the translocation of Nrf2 from cytosol to nucleus. In cells treated with N-15-M, Q-14-R and A-17-E, a higher amount of Nrf2 was found in the nucleus with respect to the control. In addition, the three active peptides, through the activation of Keap1/Nrf2 pathway, led to overexpression and increased activity of antioxidant enzymes. Molecular docking analysis confirmed the potential ability of N-15-M, Q-14-R and A-17-E to bind Keap1, showing their destabilizing effect on Keap1/Nrf2 interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA