Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Nano Lett ; 24(23): 7084-7090, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38814251

RESUMO

Magnesium is a recent addition to the plasmonic toolbox: nanomaterials that efficiently utilize photons' energy due to their ability to sustain localized surface plasmon resonances. Magnesium nanoparticles protected by a native oxide shell can efficiently absorb light across the solar spectrum, making them a promising photocatalytic material. However, their inherent reactivity toward oxidation may limit the number of reactions in which Mg-MgO can be used. Here, we investigate the stability of plasmonic Mg-MgO core-shell nanoplates under oxidative conditions. We demonstrate that the MgO shell stabilizes the metallic Mg core against oxidation in air at up to 400 °C. Furthermore, we show that the reactivity of Mg-MgO nanoplates with water vapor (3.5 vol % in N2) decreases with temperature, with no oxidation of the Mg core detected from 200 to 400 °C. This work unravels the potential of Mg-MgO nanoparticles for a broad range of catalytic transformations occurring in oxidative environments.

2.
Nano Lett ; 23(23): 10964-10970, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38011145

RESUMO

Understanding and guiding light at the nanoscale can significantly impact society, for instance, by facilitating the development of efficient, sustainable, and/or cost-effective technologies. One emergent branch of nanotechnology exploits the conversion of light into heat, where heat is subsequently harnessed for various applications including therapeutics, heat-driven chemistries, and solar heating. Gold nanoparticles are overwhelmingly the most common material for plasmon-assisted photothermal applications; yet magnesium nanoparticles present a compelling alternative due to their low cost and superior biocompatibility. Herein, we measured the heat generated and quantified the photothermal efficiency of the gold and magnesium nanoparticle suspensions. Photothermal transduction experiments and optical and thermal simulations of different sizes and shapes of gold and magnesium nanoparticles showed that magnesium is more efficient at converting light into heat compared to gold at near-infrared wavelengths, thus demonstrating that magnesium nanoparticles are a promising new class of inexpensive, biodegradable photothermal platforms.

3.
Angew Chem Int Ed Engl ; 62(52): e202312615, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37945530

RESUMO

Chiral plasmonic nanoparticles have attracted much attention because of their strong chiroptical responses and broad scientific applications. However, the types of chiral plasmonic nanoparticles have remained limited. Herein we report on a new type of chiral nanoparticle, chiral Au nanorod (NR) with five-fold rotational symmetry, which is synthesized using chiral molecules. Three different types of Au seeds (Au elongated nanodecahedrons, nanodecahedrons, and nanobipyramids) are used to study the growth behaviors. Different synthesis parameters, including the chiral molecules, surfactant, reductant, seeds, and Au precursor, are systematically varied to optimize the chiroptical responses of the chiral Au NRs. The chiral scattering measurements on the individual chiral Au NRs and their dimers are performed. Intriguingly, the chiroptical signals of the individual chiral Au NRs and their end-to-end dimers are similar, while those of the side-by-side dimers are largely reduced. Theoretical calculations and numerical simulations reveal that the different chiroptical responses of the chiral NR dimers are originated from the coupling effect between the plasmon resonance modes. Our study enriches chiral plasmonic nanoparticles and provides valuable insight for the design of plasmonic nanostructures with desired chiroptical properties.

4.
Nano Lett ; 20(10): 7405-7412, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32915579

RESUMO

Iron oxide nanorings have great promise for biomedical applications because of their magnetic vortex state, which endows them with a low remanent magnetization while retaining a large saturation magnetization. Here we use micromagnetic simulations to predict the exact shapes that can sustain magnetic vortices, using a toroidal model geometry with variable diameter, ring thickness, and ring eccentricity. Our model phase diagram is then compared with simulations of experimental geometries obtained by electron tomography. High axial eccentricity and low ring thickness are found to be key factors for forming vortex states and avoiding net-magnetized metastable states. We also find that while defects from a perfect toroidal geometry increase the stray field associated with the vortex state, they can also make the vortex state more energetically accessible. These results constitute an important step toward optimizing the magnetic behavior of toroidal iron oxide nanoparticles.

5.
J Chem Phys ; 151(24): 244708, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31893891

RESUMO

Plasmonic structures have attracted much interest in science and engineering disciplines, exploring a myriad of potential applications owing to their strong light-matter interactions. Recently, the plasmonic concentration of energy in subwavelength volumes has been used to initiate chemical reactions, for instance by combining plasmonic materials with catalytic metals. In this work, we demonstrate that plasmonic nanoparticles of earth-abundant Mg can undergo galvanic replacement in a nonaqueous solvent to produce decorated structures. This method yields bimetallic architectures where partially oxidized 200-300 nm Mg nanoplates and nanorods support many smaller Au, Ag, Pd, or Fe nanoparticles, with potential for a stepwise process introducing multiple decoration compositions on a single Mg particle. We investigated this mechanism by electron-beam imaging and local composition mapping with energy-dispersive X-ray spectroscopy as well as, at the ensemble level, by inductively coupled plasma mass spectrometry. High-resolution scanning transmission electron microscopy further supported the bimetallic nature of the particles and provided details of the interface geometry, which includes a Mg oxide separation layer between Mg and the other metal. Depending on the composition of the metallic decorations, strong plasmonic optical signals characteristic of plasmon resonances were observed in the bulk with ultraviolet-visible spectrometry and at the single particle level with darkfield scattering. These novel bimetallic and multimetallic designs open up an exciting array of applications where one or multiple plasmonic structures could interact in the near-field of earth-abundant Mg and couple with catalytic nanoparticles for applications in sensing and plasmon-assisted catalysis.

6.
Proc Natl Acad Sci U S A ; 113(32): 8916-20, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27444015

RESUMO

Metallic nanoparticles with strong optically resonant properties behave as nanoscale optical antennas, and have recently shown extraordinary promise as light-driven catalysts. Traditionally, however, heterogeneous catalysis has relied upon weakly light-absorbing metals such as Pd, Pt, Ru, or Rh to lower the activation energy for chemical reactions. Here we show that coupling a plasmonic nanoantenna directly to catalytic nanoparticles enables the light-induced generation of hot carriers within the catalyst nanoparticles, transforming the entire complex into an efficient light-controlled reactive catalyst. In Pd-decorated Al nanocrystals, photocatalytic hydrogen desorption closely follows the antenna-induced local absorption cross-section of the Pd islands, and a supralinear power dependence strongly suggests that hot-carrier-induced desorption occurs at the Pd island surface. When acetylene is present along with hydrogen, the selectivity for photocatalytic ethylene production relative to ethane is strongly enhanced, approaching 40:1. These observations indicate that antenna-reactor complexes may greatly expand possibilities for developing designer photocatalytic substrates.

7.
Nano Lett ; 18(6): 3752-3758, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29771126

RESUMO

Nanoparticles of some metals (Cu/Ag/Au) sustain oscillations of their electron cloud called localized surface plasmon resonances (LSPRs). These resonances can occur at optical frequencies and be driven by light, generating enhanced electric fields and spectacular photon scattering. However, current plasmonic metals are rare, expensive, and have a limited resonant frequency range. Recently, much attention has been focused on earth-abundant Al, but Al nanoparticles cannot resonate in the IR. The earth-abundant Mg nanoparticles reported here surmount this limitation. A colloidal synthesis forms hexagonal nanoplates, reflecting Mg's simple hexagonal lattice. The NPs form a thin self-limiting oxide layer that renders them stable suspended in 2-propanol solution for months and dry in air for at least two week. They sustain LSPRs observable in the far-field by optical scattering spectroscopy. Electron energy loss spectroscopy experiments and simulations reveal multiple size-dependent resonances with energies across the UV, visible, and IR. The symmetry of the modes and their interaction with the underlying substrate are studied using numerical methods. Colloidally synthesized Mg thus offers a route to inexpensive, stable nanoparticles with novel shapes and resonances spanning the entire UV-vis-NIR spectrum, making them a flexible addition to the nanoplasmonics toolbox.

8.
Nano Lett ; 17(4): 2611-2620, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28337921

RESUMO

Doped metal oxides are plasmonic materials that boast both synthetic and postsynthetic spectral tunability. They have already enabled promising smart window and optoelectronic technologies and have been proposed for use in surface enhanced infrared absorption spectroscopy (SEIRA) and sensing applications. Herein, we report the first step toward realization of the former utilizing cubic F and Sn codoped In2O3 nanocrystals (NCs) to couple to the C-H vibration of surface-bound oleate ligands. Electron energy loss spectroscopy is used to map the strong near-field enhancement around these NCs that enables localized surface plasmon resonance (LSPR) coupling between adjacent nanocrystals and LSPR-molecular vibration coupling. Fourier transform infrared spectroscopy measurements and finite element simulations are applied to observe and explain the nature of the coupling phenomena, specifically addressing coupling in mesoscale assembled films. The Fano line shape signatures of LSPR-coupled molecular vibrations are rationalized with two-port temporal coupled mode theory. With this combined theoretical and experimental approach, we describe the influence of coupling strength and relative detuning between the molecular vibration and LSPR on the enhancement factor and further explain the basis of the observed Fano line shape by deconvoluting the combined response of the LSPR and molecular vibration in transmission, absorption and reflection. This study therefore illustrates various factors involved in determining the LSPR-LSPR and LSPR-molecular vibration coupling for metal oxide materials and provides a fundamental basis for the design of sensing or SEIRA substrates.

9.
Nano Lett ; 16(11): 6939-6945, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27704845

RESUMO

The internal structure of hollow AgAu nanorods created by partial galvanic replacement was manipulated reversibly, and its effect on optical properties was mapped with nanometer resolution. Using the electron beam in a scanning transmission electron microscope to create solvated electrons and reactive radicals in an encapsulated solution-filled cavity in the nanorods, Ag ions were reduced nearby the electron beam, reshaping the core of the nanoparticles without affecting the external shape. The changes in plasmon-induced near-field properties were then mapped with electron energy-loss spectroscopy without disturbing the internal structure, and the results are supported by finite-difference time-domain calculations. This reversible shape and near-field control in a hollow nanoparticle actuated by an external stimulus introduces possibilities for applications in reprogrammable sensors, responsive materials, and optical memory units. Moreover, the liquid-filled nanorod cavity offers new opportunities for in situ microscopy of chemical reactions.

10.
Anal Chem ; 88(16): 7968-74, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27436204

RESUMO

Lipid membranes and membrane proteins are important biosensing targets, motivating the development of label-free methods with improved sensitivity. Silica-coated metal nanoparticles allow these systems to be combined with supported lipid bilayers for sensing membrane proteins through localized surface plasmon resonance (LSPR). However, the small sensing volume of LSPR makes the thickness of the silica layer critical for performance. Here, we develop a simple, inexpensive, and rapid sol-gel method for preparing thin conformal, continuous silica films and demonstrate its applicability using gold nanodisk arrays with LSPRs in the near-infrared range. Silica layers as thin as ∼5 nm are observed using cross-sectional scanning transmission electron microscopy. The loss in sensitivity due to the thin silica coating was found to be only 16%, and the biosensing capabilities of the substrates were assessed through the binding of cholera toxin B to GM1 lipids. This sensor platform should prove useful in the rapid, multiplexed detection and screening of membrane-associated biological targets.


Assuntos
Técnicas Biossensoriais , Toxina da Cólera/análise , Gangliosídeo G(M1)/química , Bicamadas Lipídicas/química , Ressonância de Plasmônio de Superfície , Membrana Celular/química , Ouro/química , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Dióxido de Silício/química
11.
Nano Lett ; 15(4): 2751-5, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25790095

RESUMO

We demonstrate the facile synthesis of high purity aluminum nanocrystals over a range of controlled sizes from 70 to 220 nm diameter with size control achieved through a simple modification of solvent ratios in the reaction solution. The monodisperse, icosahedral, and trigonal bipyramidal nanocrystals are air-stable for weeks, due to the formation of a 2-4 nm thick passivating oxide layer on their surfaces. We show that the nanocrystals support size-dependent ultraviolet and visible plasmon modes, providing a far more sustainable alternative to gold and silver nanoparticles currently in widespread use.


Assuntos
Alumínio/química , Cristalização/métodos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Ressonância de Plasmônio de Superfície/métodos , Luz , Teste de Materiais , Tamanho da Partícula , Espalhamento de Radiação , Propriedades de Superfície
12.
Phys Chem Chem Phys ; 17(42): 27940-51, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25971411

RESUMO

Bimetallic nanoparticles are of interest due to their physical and chemical properties, which differ from their monometallic counterparts, and are dependent on size, composition and structure. Their unique chemical and physical properties make them useful in many optical, electronic and catalytic applications. In this perspective article we discuss segregation in bimetallic nanoparticles and highlight a recent analytical model based on minimization of energy. Computational approaches are discussed, along with a few examples and a comparison with the analytical approach. Experimental evidence for surface segregation is described, and finally, future directions are suggested. From this review of theoretical and experimental information it appears that a general consensus is starting to emerge that there are size-dependent variations in segregation in nanoparticles with the experimental data reasonably consistent with the theoretical models.

13.
ACS Nano ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963330

RESUMO

Nanostructures of some metals can sustain localized surface plasmon resonances, collective oscillations of free electrons excited by incident light. This effect results in wavelength-dependent absorption and scattering, enhancement of the incident electric field at the metal surface, and generation of hot carriers as a decay product. The enhanced electric field can be utilized to amplify the spectroscopic signal in surface-enhanced Raman scattering (SERS), while hot carriers can be exploited for catalytic applications. In recent years, cheaper and more earth abundant alternatives to traditional plasmonic Au and Ag have gained growing attention. Here, we demonstrate the ability of plasmonic Mg nanoparticles to enhance Raman scattering and drive chemical transformations upon laser irradiation. The plasmonic properties of Mg nanoparticles are characterized at the bulk and single particle level by optical spectroscopy and scanning transmission electron microscopy coupled with electron energy-loss spectroscopy and supported by numerical simulations. SERS enhancement factors of ∼102 at 532 and 633 nm are obtained using 4-mercaptobenzoic acid and 4-nitrobenzenethiol. Furthermore, the reductive coupling of 4-nitrobenzenethiol to 4,4'-dimercaptoazobenzene is observed on the surface of Mg nanoparticles under 532 nm excitation in the absence of reducing agents, indicating a plasmon-driven catalytic process. Once decorated with Pd, Mg nanostructures display an enhancement factor of 103 along with an increase in the rate of catalytic coupling. The results of this study demonstrate the successful application of plasmonic Mg nanoparticles in sensing and plasmon-enhanced catalysis.

14.
J Phys Chem C Nanomater Interfaces ; 128(11): 4666-4676, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38533241

RESUMO

Mg nanoparticles are an emerging plasmonic material due to Mg's abundance and ability to sustain size- and shape-dependent localized surface plasmon resonances across a broad range of wavelengths from the ultraviolet to the near infrared. However, Mg nanoparticles are colloidally unstable due to their tendency to aggregate and sediment. Nanoparticle aggregation can be inhibited by the addition of capping agents that impart surface charges or steric repulsion. Here, we report that the common capping agents poly(vinyl) pyrrolidone (PVP), polyethylene glycol (PEG), cetyltrimethylammonium bromide (CTAB), and sodium dodecyl sulfate (SDS) interact differently and have varied effects on the aggregation and colloidal stability of Mg nanoparticles. Nanoparticles synthesized in the presence of PVP showed improvements in colloidal stability and reduced aggregation, as observed by electron microscopy and optical spectroscopy. The binding of PVP was confirmed through infrared and X-ray photoelectron spectroscopy. The influence of PVP on the reduction of di-n-butyl magnesium was evaluated through analysis of particle size distribution and Mg yield as a function of reaction time, reducing agent, and temperature. Furthermore, the presence of PVP drastically changes the growth pattern of metallic Mg structures obtained from the reduction of the Grignard reagents butylmagnesium chloride and phenylmagnesium chloride by lithium naphthalenide: large polycrystalline aggregates and well-separated faceted nanoparticles grow without and with PVP, respectively. This study provides new synthetic routes that generate colloidally stable and well-dispersed Mg nanoparticles for plasmonic and other applications.

15.
Nanoscale ; 16(15): 7480-7492, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38344779

RESUMO

Magnesium nanoparticles offer an alternative plasmonic platform capable of resonances across the ultraviolet, visible and near-infrared. Crystalline magnesium nanoparticles display twinning on the (101̄1), (101̄2), (101̄3), and (112̄1) planes leading to concave folded shapes named tents, chairs, tacos, and kites, respectively. We use the Wulff-based Crystal Creator tool to expand the range of Mg crystal shapes with twinning over the known Mg twin planes, i.e., (101̄x), x = 1, 2, 3 and (112̄y), y = 1, 2, 3, 4, and study the effects of relative facet expression on the resulting shapes. These shapes include both concave and convex structures, some of which have been experimentally observed. The resonant modes, far-field, and near-field optical responses of these unusual plasmonic shapes as well as their photothermal behaviour are reported, revealing the effects of folding angle and in-filling of the concave region. Significant differences exist between shapes, in particular regarding the maximum and average electric field enhancement. A maximum field enhancement (|E|/|E0|) of 184, comparable to that calculated for Au and Ag nanoparticles, was found at the tips of the (112̄4) kite. The presence of a 5 nm MgO shell is found to decrease the near-field enhancement by 67% to 90% depending on the shape, while it can increase the plasmon-induced temperature rise by up to 42%. Tip rounding on the otherwise sharp nanoparticle corners also significantly affects the maximum field enhancement. These results provide guidance for the design of enhancing and photothermal substrates for a variety of plasmonic applications across a wide spectral range.

16.
ACS Appl Nano Mater ; 7(8): 8783-8791, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38694723

RESUMO

A bottom-up approach, the Langmuir-Blodgett technique, is used for the preparation of composite thin films of gold nanoparticles and polymers: poly(styrene-b-2-vinylpyridine), poly-2-vinylpyridine, and polystyrene. The self-assembly of poly(styrene-b-2-vinylpyridine) at the air-water interface leads to the formation of surface micelles, which serve as a template for the organization of gold nanoparticles into ring assemblies. By using poly-2-vinylpyridine in conjunction with low surface pressure, the distance between nanostructures can be increased, allowing for optical characterization of single nanostructures. Once deposited on a solid substrate, the preorganized gold nanoparticles are subjected to further growth by the reduction of additional gold, leading to a variety of nanostructures which can be divided into two categories: nanocrescents and circular arrays of nanoparticles. The optical properties of individual structures are investigated by optical dark-field spectroscopy and numerical calculations. The plasmonic behavior of the nanostructures is elucidated through the correlation of optical properties with structural features and the identification of dominant plasmon modes. Being based on a self-assembly approach, the reported method allows for the formation of interesting plasmonic materials under ambient conditions, at a relatively large scale, and at low cost. These attributes, in addition to the resonances located in the near-infrared region of the spectrum, make nanocrescents candidates for biological and chemical sensing.

17.
Phys Chem Chem Phys ; 15(12): 4110-29, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23420338

RESUMO

Interest in nanotechnology is driven by the unique and novel properties of nanoscale materials such as the strong interaction of metal particles with light, caused by localized surface plasmon resonances (LSPRs). In this perspective article we review and discuss prominent advantages and advances in single particle studies of plasmonic nanostructures. Common techniques and recent improvements in spatial and spectral resolution will first be outlined, covering both far-field and near-field phenomena. Then, new insight and information uniquely obtained from single particle approaches will be overviewed, including several fundamental studies of plasmonic behaviour, as well as applications using single particle tracking and chemical reaction monitoring. Finally, highly interdisciplinary future directions and experiments are discussed.

18.
Nano Lett ; 12(9): 4823-9, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22845792

RESUMO

Electron emission from single, supported Ag nanocubes excited with ultrafast laser pulses (λ = 800 nm) is studied via spatial and polarization correlated (i) dark field scattering microscopy (DFM), (ii) scanning photoionization microscopy (SPIM), and (iii) high-resolution transmission electron microscopy (HRTEM). Laser-induced electron emission is found to peak for laser polarization aligned with cube diagonals, suggesting the critical influence of plasmonic near-field enhancement of the incident electric field on the overall electron yield. For laser pulses with photon energy below the metal work function, coherent multiphoton photoelectron emission (MPPE) is identified as the most probable mechanism responsible for electron emission from Ag nanocubes and likely metal nanoparticles/surfaces in general.


Assuntos
Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Confocal/métodos , Prata/química , Ressonância de Plasmônio de Superfície/métodos , Campos Eletromagnéticos , Elétrons , Teste de Materiais , Tamanho da Partícula , Fótons
19.
J Phys Chem C Nanomater Interfaces ; 127(16): 7702-7706, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37483685

RESUMO

Magnesium nanoparticles (MgNPs) exhibit localized surface plasmon resonances across the ultraviolet, visible, and near-infrared parts of electromagnetic spectrum and are attracting increasing interest due to their sustainability and biocompatibility. In this study, we used tip-enhanced Raman spectroscopy (TERS) to examine the photocatalytic properties of MgNP protected by a thin native oxide layer and their Au-modified bimetallic analogs produced by partial galvanic replacement, Au-MgNPs. We found no reduction of 4-nitrobenzenethiol (4-NBT) to p,p'-dimercaptoazobisbenzene (DMAB) when a Au-coated tip was placed in contact with a self-assembled monolayer of 4-NBT molecules adsorbed on MgNPs alone. However, decorating Mg with Au made these bimetallic structures catalytically active. The DMAB signal signature of photocatalytic activity was more delocalized around AuNPs attached to Mg than around AuNPs on a Si substrate, indicating coupling between the Mg core and Au decorations. This report on photocatalytic activity of a bimetallic structure including plasmonic Mg paves the way for further catalyst architectures benefiting from Mg's versatility and abundance.

20.
Ultramicroscopy ; 252: 113775, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37295062

RESUMO

Electron tomography (ET) has become an important tool for understanding the 3D nature of nanomaterials, with recent developments enabling not only scalar reconstructions of electron density, but also vector reconstructions of magnetic fields. However, whilst new signals have been incorporated into the ET toolkit, the acquisition schemes have largely kept to conventional single-axis tilt series for scalar ET, and dual-axis schemes for magnetic vector ET. In this work, we explore the potential of using multi-axis tilt schemes including conical and spiral tilt schemes to improve reconstruction fidelity in scalar and magnetic vector ET. Through a combination of systematic simulations and a proof-of-concept experiment, we show that spiral and conical tilt schemes have the potential to produce substantially improved reconstructions, laying the foundations of a new approach to electron tomography acquisition and reconstruction.


Assuntos
Tomografia com Microscopia Eletrônica , Processamento de Imagem Assistida por Computador , Tomografia com Microscopia Eletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Campos Magnéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA