Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 366
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(13): 5942-5951, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507823

RESUMO

The intake of methylmercury (MeHg)-contaminated rice poses immense health risks to rice consumers. However, the mechanisms of MeHg accumulation in rice plants are not entirely understood. The knowledge that the MeHg-Cysteine complex was dominant in polished rice proposed a hypothesis of co-transportation of MeHg and cysteine inside rice plants. This study was therefore designed to explore the MeHg accumulation processes in rice plants by investigating biogeochemical associations between MeHg and amino acids. Rice plants and underlying soils were collected from different Hg-contaminated sites in the Wanshan Hg mining area. The concentrations of both MeHg and cysteine in polished rice were higher than those in other rice tissues. A significant positive correlation between MeHg and cysteine in rice plants was found, especially in polished rice, indicating a close geochemical association between cysteine and MeHg. The translocation factor (TF) of cysteine showed behavior similar to that of the TF of MeHg, demonstrating that these two chemical species might share a similar transportation mechanism in rice plants. The accumulation of MeHg in rice plants may vary due to differences in the molar ratios of MeHg to cysteine and the presence of specific amino acid transporters. Our results suggest that cysteine plays a vital role in MeHg accumulation and transportation inside rice plants.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Oryza , Poluentes do Solo , Compostos de Metilmercúrio/metabolismo , Cisteína/metabolismo , Monitoramento Ambiental/métodos , Mercúrio/análise , Solo/química
2.
Environ Sci Technol ; 57(17): 7009-7017, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37010423

RESUMO

Discarded plastics and microplastics (MPs) in the environment are considered emerging contaminants and indicators of the Anthropocene epoch. This study reports the discovery of a new type of plastic material in the environment─plastic-rock complexes─formed when plastic debris irreversibly sorbs onto the parent rock after historical flooding events. These complexes consist of low-density polyethylene (LDPE) or polypropylene (PP) films stuck onto quartz-dominated mineral matrices. These plastic-rock complexes serve as hotspots for MP generation, as evidenced by laboratory wet-dry cycling tests. Over 1.03 × 108 and 1.28 × 108 items·m-2 MPs were generated in a zero-order mode from the LDPE- and PP-rock complexes, respectively, following 10 wet-dry cycles. The speed of MP generation was 4-5 orders of magnitude higher than that in landfills, 2-3 orders of magnitude higher than that in seawater, and >1 order of magnitude higher than that in marine sediment as compared with previously reported data. Results from this investigation provide strong direct evidence of anthropogenic waste entering geological cycles and inducing potential ecological risks that may be exacerbated by climate change conditions such as flooding events. Future research should evaluate this phenomenon regarding ecosystem fluxes, fate, and transport and impacts of plastic pollution.


Assuntos
Plásticos , Poluentes Químicos da Água , Microplásticos , Polietileno/análise , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Polipropilenos/análise
3.
Environ Sci Technol ; 57(39): 14770-14786, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37695611

RESUMO

Vanadium(V) is a highly toxic multivalent, redox-sensitive element. It is widely distributed in the environment and employed in various industrial applications. Interactions between V and (micro)organisms have recently garnered considerable attention. This Review discusses the biogeochemical cycling of V and its corresponding bioremediation strategies. Anthropogenic activities have resulted in elevated environmental V concentrations compared to natural emissions. The global distributions of V in the atmosphere, soils, water bodies, and sediments are outlined here, with notable prevalence in Europe. Soluble V(V) predominantly exists in the environment and exhibits high mobility and chemical reactivity. The transport of V within environmental media and across food chains is also discussed. Microbially mediated V transformation is evaluated to shed light on the primary mechanisms underlying microbial V(V) reduction, namely electron transfer and enzymatic catalysis. Additionally, this Review highlights bioremediation strategies by exploring their geochemical influences and technical implementation methods. The identified knowledge gaps include the particulate speciation of V and its associated environmental behaviors as well as the biogeochemical processes of V in marine environments. Finally, challenges for future research are reported, including the screening of V hyperaccumulators and V(V)-reducing microbes and field tests for bioremediation approaches.


Assuntos
Solo , Vanádio , Vanádio/análise , Vanádio/química , Biodegradação Ambiental , Minerais , Oxirredução
4.
Environ Res ; 219: 115066, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36528044

RESUMO

Metal halide perovskite solar cells (PSCs) have gained extensive attention in the field of solar photovoltaic technology over the past few years. Despite being a remarkable alternative to fossil fuels, solar cells may have detrimental effects on the environment and human health owing to the use of toxic materials during manufacturing. Although modern metal-halide-based PSCs are stable and have encapsulation to prevent the release of potentially toxic materials into the environment, their destruction due to strong winds, hail, snow, landslides, fires, or waste disposal can result in the exposure of these materials to the environment. This may lead to the contamination of soil and groundwater, and uptake of potentially toxic elements by plants, subsequently affecting humans and other living organisms via food chain contamination. Despite worldwide concern, the environmental and ecotoxicological impacts of metal-halide-based PSCs have not been comprehensively surveyed. This review summarizes and critically evaluates the current status of metal-halide-based PSC production and its impact on environmental sustainability, food security, and human health. Furthermore, safe handling and disposal methods for the waste generated from metal-halide-based PSCs are proposed, with a focus on recycling and reuse. Although some studies have suggested that the amount of lead released from metal halide PSCs is far below the maximum permissible levels in most soils, a clear conclusion cannot be reached until real contamination scenarios are assessed under field conditions. Precautions must be taken to minimize environmental contamination throughout the lifecycle of PSCs until nontoxic and similarly performing alternative solar photovoltaic products are developed.


Assuntos
Compostos de Cálcio , Metais , Humanos , Óxidos , Solo
5.
Environ Res ; 229: 116005, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37116676

RESUMO

Litterfall, typically referring to needles/leaves, may stand for >50% of the total mercury (Hg) deposition in forest ecosystems. By detailed categorisation, we reveal for the first time that the contributions through lichens and fine litter, together 9.98 µg Hg m-2 yr-1, could be as high as that in needle litter (9.96 µg m-2 yr-1) to the annual total Hg deposition (44.6 µg m-2 yr-1) in a subalpine forest in Switzerland. Noticeably, needle litter had the highest contribution (53%) to total Hg in the autumn litterfall but lichens and fine litter together predominated in other seasons (47-59%). Such a seasonal pattern is caused by the high ability of lichens and fine litter to accumulate Hg and the high needle litterfall in autumn, which is related to a good rainfall in summer followed by a dry period in autumn. The constantly higher Hg levels in lichens and fine litter than in needle litter together with similar seasonal patterns of litterfall during 2009-2019 and rainfall during 1980-2019 suggest that our finding can be generally valid. Here, we highlight not only the considerable role of non-needle litterfall in Hg deposition but also the association with weather for seasonal Hg dynamics in different litterfall components.


Assuntos
Líquens , Mercúrio , Mercúrio/análise , Ecossistema , Árvores , Monitoramento Ambiental , Florestas
6.
Environ Res ; 227: 115799, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37015300

RESUMO

Veterinary antibiotics (VAs) are emerging contaminants in soils as they may pose high risks to the ecosystem and human health. Identifying VAs accumulation in soils is essential for assessing their potential risks. Therefore, we investigated the distribution of VAs in soils from vegetable fields and evaluated their potential ecological and antimicrobial resistance risks in the Chongqing region of the Three Gorges Reservoir area, China. Results indicated that twenty-six species of VAs, including nine sulfonamides (SAs), seven quinolones (QNs), four tetracyclines (TCs), four macrolides (MLs), and two other species of VAs were detected in soils, with their accumulative levels ranging from 1.4 to 3145.7 µg kg-1. TCs and QNs were the dominant VAs species in soils with high detection frequencies (100% TCs and 80.6% for QNs) and accumulative concentration (up to 1195 µg kg-1 for TCs and up to 485 µg kg-1 for QNs). Risk assessment indices showed that VAs (specifically SAs, TCs, and QNs) in most vegetable soils would pose a medium to high risk to the ecosystem and antimicrobial resistance. Mixture of VAs posed a higher risk to soil organisms, antimicrobial resistance, and plants than to aquatic organisms. Modeling analysis indicated that socioeconomic conditions, farmers' education levels, agricultural practices, and soil properties were the main factors governing VAs accumulation and environmental risks. Farmers with a high educational level owned large-scale farms and were more willing to use organic fertilizers for vegetable production, which eventually led to high VAs accumulation in vegetable soil. These findings would provide a reference for sustainable agricultural and environmental production under the current scenario of chemical fertilizer substitution by organic products and green agricultural development.


Assuntos
Quinolonas , Poluentes do Solo , Humanos , Antibacterianos/análise , Solo/química , Verduras/química , Ecossistema , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Tetraciclinas/análise , Sulfanilamida/análise , China , Medição de Risco , Fertilizantes/análise
7.
Ecotoxicol Environ Saf ; 249: 114408, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36516621

RESUMO

The unpredictable climatic perturbations, the expanding industrial and mining sectors, excessive agrochemicals, greater reliance on wastewater usage in cultivation, and landfill leachates, are collectively causing land degradation and affecting cultivation, thereby reducing food production globally. Biochar can generally mitigate the unfavourable effects brought about by climatic perturbations (drought, waterlogging) and degraded soils to sustain crop production. It can also reduce the bioavailability and phytotoxicity of pollutants in contaminated soils via the immobilization of inorganic and/or organic contaminants, commonly through surface complexation, electrostatic attraction, ion exchange, adsorption, and co-precipitation. When biochar is applied to soil, it typically neutralizes soil acidity, enhances cation exchange capacity, water holding capacity, soil aeration, and microbial activity. Thus, biochar has been was widely used as an amendment to ameliorate crop abiotic/biotic stress. This review discusses the effects of biochar addition under certain unfavourable conditions (salinity, drought, flooding and heavy metal stress) to improve plant resilience undergoing these perturbations. Biochar applied with other stimulants like compost, humic acid, phytohormones, microbes and nanoparticles could be synergistic in some situation to enhance plant resilience and survivorship in especially saline, waterlogged and arid conditions. Overall, biochar can provide an effective and low-cost solution, especially in nutrient-poor and highly degraded soils to sustain plant cultivation.


Assuntos
Metais Pesados , Poluentes do Solo , Carvão Vegetal , Agricultura , Solo , Poluentes do Solo/análise
8.
J Environ Manage ; 347: 119056, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37757688

RESUMO

Contamination, hazard level and source of 10 widely concerned potentially toxic metal(loid)s (PTMs) Co, As, Pb, Cr, Cu, Zn, Ni, Mn, Ba, and V in fine dust with particle size below 63 µm (FD63) were investigated to assess the environmental quality of college campuses and influencing factors. PTMs sources were qualitatively analyzed using statistical methods and quantitatively apportioned using positive matrix factorization. Probabilistic contamination degrees of PTMs were evaluated using enrichment factor and Nemerow integrated enrichment factor. Eco-health risk levels of content-oriented and source-oriented for PTMs were evaluated using Monte Carlo simulation. Mean levels of Zn (643.8 mg kg-1), Pb (146.0 mg kg-1), Cr (145.9 mg kg-1), Cu (95.5 mg kg-1), and Ba (804.2 mg kg-1) in FD63 were significantly larger than soil background values. The possible sources of the concerned PTMs in FD63 were traffic non-exhaust emissions, natural source, mixed source (auto repair waste, paints and pigments) and traffic exhaust emissions, which accounted for 45.7%, 25.4%, 14.5% and 14.4% of total PTMs contents, respectively. Comprehensive contamination levels of PTMs were very high, mainly caused by Zn pollution and non-exhaust emissions. Combined ecological risk levels of PTMs were low and moderate, chiefly caused by Pb and traffic exhaust emissions. The non-cancer risks of the PTMs in FD63 to college students fell within safety level, while the carcinogenic PTMs in FD63 had a certain cancer risks to college students. The results of source-specific health risk assessment indicated that Cr and As were the priority PTMs, and the mixed source was the priority pollution source of PTMs in FD63 from college campuses, which should be paid attention to by the local government.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Metais Pesados/análise , Monitoramento Ambiental/métodos , Poeira/análise , Chumbo , Método de Monte Carlo , Poluentes do Solo/análise , Medição de Risco , China , Cidades
9.
Environ Geochem Health ; 45(2): 359-379, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34676511

RESUMO

The aim of this work was to assess the origins, mobility, bioavailability and potential health risks of V, Cr, Co, As, Se, Mo, Cd, Sn and Sb, which are not sufficiently studied in the terrestrial environment of Egypt. This has been carried out by employing a combination of chemical fractionation, plants uptake, mathematical modeling and risk assessment approaches on a wide range of soils and plants sampled from industrial, urban and agricultural locations across Egypt. The contents of As, Cd, Sn and Sb were elevated in the soils of some urban and industrial locations within Cairo, although their soil geo-accumulation (Igeo) indices remained ≤ 2, indicating only moderate contamination. Selenium showed moderate to heavy contamination levels (Igeo up to 4.7) in all sampling locations, and Sb was highly elevated (Igeo = 7.1; extreme contamination) in one industrial location. Therefore, Se was the most important contributor to the pollution load followed by Sb and Cd. Both principle component analysis (of total content) and geochemical fractionation (by sequential extraction) suggested that V, Cr and Co are mostly of geogenic origin, while Se and Sb contents appear to be highly influenced by anthropogenic inputs. The most mobile and bioavailable element was Cd with a large non-residual fraction in all soils (76% of total Cd). The bio-concentration factors of Cd in leafy and fruiting plants were 50 times larger than other elements (except Mo) indicating preferential systematic plant uptake of Cd. Risk assessment models showed an overall low noncarcinogenic and carcinogenic risks to the population of Egypt due to the studied elements with only a few anomalies.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Solo/química , Metais Pesados/análise , Egito , Cádmio/análise , Monitoramento Ambiental , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Medição de Risco
10.
Environ Geochem Health ; 45(2): 507-523, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35022880

RESUMO

Climate change is a global challenge that is accelerated by contamination with hazardous substances like arsenic (As), posing threat to the agriculture, ecosystem and human health. Here, we explored the impact of various ameliorants on geochemical distribution of As in two soils with contrasting textures (sandy clay loam (Khudpur Village) and clay loam (Mattital Village)) under paddy soil conditions and their influence on the CO2-carbon efflux. The exchangeable As pool in clay loam soil increased as: lignite (0.4%) < biogas slurry (6%) < cow dung (9%), and < biochar (20%). However, in the sandy clay loam soil exchangeable soil As pool was found to be maximum with farmyard manure followed by biogas slurry, biochar and cow dung (17%, 14%, 13% and 7%, respectively). Interestingly, in the sandy clay loam soil the percentage As distribution in organic fraction was: biochar (38%) > cow dung (33%) > biogas slurry (23%) > sugarcane bagasse (22%) > farmyard manure (21%) that was higher compared to the clay loam soil (< 6% for all the amendments). In addition to the highest As immobilization by biochar in sandy clay loam soil, it also led to the lowest CO2-carbon efflux (1470 CO2-C mg kg-1) among all the organic/inorganic amendments. Overall, the current study advances our understanding on the pivotal role of organic amendments, notably biochar, in immobilizing As under paddy soil conditions with low (CO2) carbon loss, albeit it is dependent on soil and ameliorant types.


Assuntos
Arsênio , Saccharum , Humanos , Solo/química , Carbono , Argila/química , Celulose , Dióxido de Carbono , Esterco , Ecossistema , Biocombustíveis , Carvão Vegetal/química , Areia
11.
J Environ Sci (China) ; 125: 26-36, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375912

RESUMO

Herein, a one-step co-pyrolysis protocol was adopted for the first time to prepare a novel pyrogenic carbon-Cu0/Fe3O4 heteroatoms (FCBC) in CO2 ambiance to discern the roles of each component in PDS activation. During co-pyrolysis, CO2 catalyzed formation of reducing gases by biomass which facilitated reductive transformation of Fe3+ and Cu2+ to Cu0 and Fe3O4, respectively. According to the analysis, the resulting metal (oxide) catalyzed graphitization of biocharand decomposition of volatile substances resulting in an unprecedented surface area (1240 m2/g). The resulting FCBC showed greater structural defects and less electrical impedance. Batch experiments indicated that Rhodamine B (RhB) degradation by FCBC (100%) was superior to Fe3O4 (50%) and Cu0/Fe3O4 (76.4%) in persulfate (PDS) system, which maintained reasonable efficiency (75.6%-63.6%) within three cycles. The reactive oxygen species (ROS) associated with RhB degradation was identified by an electron paramagnetic resonance and confirmed by scavenging experiments. RhB degradation invoked both (sulfate and dominantly hydroxyl) radical and non-radical (singlet oxygen, 1O2) pathways. Regarding FCBC, Cu0 can continuously react with Fe3+ in Fe3O4 to generate larger quantities of Fe2+, and both Cu0 and Fe2+ activated PDS to yield sulfate radicals which was quickly converted to hydroxyl radical. Besides, Cu0/Cu2+ could complex with PDS to form a metastable complex, which particularly contributed to 1O2 generation. These cascade reactions by FCBC were reinforced by carbonyl group of biochar and favorable electron transfer ability. This work highlighted a new approach to prepare a magnetic and environment-benign heterogonous catalyst to remove organic pollutants in water.


Assuntos
Grafite , Pirólise , Dióxido de Carbono , Carvão Vegetal/química , Sulfatos/química , Radical Hidroxila
12.
Planta ; 256(5): 97, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36219256

RESUMO

MAIN CONCLUSION: Drought may be efficiently managed using the following strategies: prevention, mitigation, readiness, recovery, and transformation. Biotechnological interventions may become highly important in reducing plants' drought stress in order to address key plant challenges such as population growth and climate change. Drought is a multidimensional construct with several triggering mechanisms or contributing factors working at various spatiotemporal scales, making it one of the known natural catastrophes. Drought is among the causes of hunger and malnutrition, decreasing agricultural output, and poor nutrition. Many deaths caused in children are due to hunger situations, and one in four children face stunted growth. All this hunger and malnutrition may be responsible for the reduction in agricultural productivity caused due to the drought situations affecting food security. Global Hunger Index has been accelerating due to under-nutrition and under-5 deaths. Drought has been covering more than 20% of the world's agricultural areas, leading to significantly less food production than what is required for consumption. Drought reduces soil fertility and adversely affects soil biological activity reducing the inherent capacity of the soil to support vegetation. Recent droughts have had a much greater effect on people's lives, even beyond causing poverty and hunger. Drought may have substantial financial consequences across the globe it may cause a severe impact on the world economy. It is a natural feature of the environment that will appear and disappear as it has in history. Due to increasing temperatures and growing vulnerabilities, it will undoubtedly occur more often and seriously in the coming years. To ensure sustainable socio-economic and social development, it is critical to reducing the effects of potential droughts worldwide using different biotechnological interventions. It's part of a long-term growth plan, and forecasting is essential for early warnings and global hunger management.


Assuntos
Fome , Desnutrição , Secas , Abastecimento de Alimentos , Desnutrição/epidemiologia , Desnutrição/prevenção & controle , Solo
13.
Glob Chang Biol ; 28(22): 6665-6678, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35989422

RESUMO

Exploring the responses of greenhouse gas (GHG) emissions to land use conversion or reversion is significant for taking effective land use measures to alleviate global warming. A global meta-analysis was conducted to analyze the responses of carbon dioxide (CO2 ), methane (CH4 ), and nitrous oxide (N2 O) emissions to land use conversion or reversion, and determine their temporal evolution, driving factors, and potential mechanisms. Our results showed that CH4 and N2 O responded positively to land use conversion while CO2 responded negatively to the changes from natural herb and secondary forest to plantation. By comparison, CH4 responded negatively to land use reversion and N2 O also showed negative response to the reversion from agricultural land to forest. The conversion of land use weakened the function of natural forest and grassland as CH4 sink and the artificial nitrogen (N) addition for plantation increased N source for N2 O release from soil, while the reversion of land use could alleviate them to some degree. Besides, soil carbon would impact CO2 emission for a long time after land use conversion, and secondary forest reached the CH4 uptake level similar to that of primary forest after over 40 years. N2 O responses had negative relationships with time interval under the conversions from forest to plantation, secondary forest, and pasture. In addition, meta-regression indicated that CH4 had correlations with several environmental variables, and carbon-nitrogen ratio had contrary relationships with N2 O emission responses to land use conversion and reversion. And the importance of driving factors displayed that CO2 , CH4 , and N2 O response to land use conversion and reversion was easily affected by NH4 + and soil moisture, mean annual temperature and NO3 - , total nitrogen and mean annual temperature, respectively. This study would provide enlightenments for scientific land management and reduction of GHG emissions.


Assuntos
Gases de Efeito Estufa , Dióxido de Carbono/análise , Gases de Efeito Estufa/análise , Metano/análise , Nitrogênio/análise , Óxido Nitroso/análise , Solo
14.
Environ Sci Technol ; 56(7): 4187-4198, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35289167

RESUMO

Biochar application is a promising strategy for the remediation of contaminated soil, while ensuring sustainable waste management. Biochar remediation of heavy metal (HM)-contaminated soil primarily depends on the properties of the soil, biochar, and HM. The optimum conditions for HM immobilization in biochar-amended soils are site-specific and vary among studies. Therefore, a generalized approach to predict HM immobilization efficiency in biochar-amended soils is required. This study employs machine learning (ML) approaches to predict the HM immobilization efficiency of biochar in biochar-amended soils. The nitrogen content in the biochar (0.3-25.9%) and biochar application rate (0.5-10%) were the two most significant features affecting HM immobilization. Causal analysis showed that the empirical categories for HM immobilization efficiency, in the order of importance, were biochar properties > experimental conditions > soil properties > HM properties. Therefore, this study presents new insights into the effects of biochar properties and soil properties on HM immobilization. This approach can help determine the optimum conditions for enhanced HM immobilization in biochar-amended soils.


Assuntos
Recuperação e Remediação Ambiental , Metais Pesados , Poluentes do Solo , Carvão Vegetal , Aprendizado de Máquina , Solo , Poluentes do Solo/análise
15.
Environ Sci Technol ; 56(23): 16546-16566, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36301703

RESUMO

The contamination of soil with organic pollutants has been accelerated by agricultural and industrial development and poses a major threat to global ecosystems and human health. Various chemical and physical techniques have been developed to remediate soils contaminated with organic pollutants, but challenges related to cost, efficacy, and toxic byproducts often limit their sustainability. Fortunately, phytoremediation, achieved through the use of plants and associated microbiomes, has shown great promise for tackling environmental pollution; this technology has been tested both in the laboratory and in the field. Plant-microbe interactions further promote the efficacy of phytoremediation, with plant growth-promoting bacteria (PGPB) often used to assist the remediation of organic pollutants. However, the efficiency of microbe-assisted phytoremediation can be impeded by (i) high concentrations of secondary toxins, (ii) the absence of a suitable sink for these toxins, (iii) nutrient limitations, (iv) the lack of continued release of microbial inocula, and (v) the lack of shelter or porous habitats for planktonic organisms. In this regard, biochar affords unparalleled positive attributes that make it a suitable bacterial carrier and soil health enhancer. We propose that several barriers can be overcome by integrating plants, PGPB, and biochar for the remediation of organic pollutants in soil. Here, we explore the mechanisms by which biochar and PGPB can assist plants in the remediation of organic pollutants in soils, and thereby improve soil health. We analyze the cost-effectiveness, feasibility, life cycle, and practicality of this integration for sustainable restoration and management of soil.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Humanos , Solo/química , Poluentes do Solo/análise , Ecossistema , Biodegradação Ambiental , Plantas , Bactérias
16.
Environ Res ; 214(Pt 1): 113729, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35803343

RESUMO

Abandoned gold mining spoils pose socio-environmental, human, and animal health impacts and threaten sustainability of mineral extraction. Green trials and ecological solutions are required to effectively remediate these contaminated soils and mitigate the associated risks. Here, we carried out a pot experiment using a highly contaminated soil (mean total As = 5104.0 mg/kg) collected from an abandoned mine spoil in Ghana. We aimed to quantify the impacts of compost, iron oxide, and poultry manure on the mobilization, fractionation, and uptake of As by ryegrass (Lolium perenne). The soil amendments were applied at a rate of 5% (w/w) each, separately or in combination. We extracted the mine spoil soil readily-bioavailable As and specific-sorbed As, and determined the As contents in plant and the uptake after harvest. The plant transfer indices for soil-to-root (bioconcentration factor, BCF), soil-to-shoot (bioaccumulation concentration- BAC), and root-to-shoot (translocation factor- TF) were also calculated. Addition of manure increased the mining readily-bioavailable As by 243% and specific-sorbed As by 38%, as compared to the control. Manure addition further aided root As-uptake by 134%, whilst its combination with compost increased uptake by 101%. Lone addition of manure and in combination with compost resulted in BCF above 1, indicating increased As-phytostability. The presence of carbon and iron in the roots of the ryegrass sorbed or precipitated As limited its soil-to-shoot and root-to-shoot transfer. These findings indicate that manure alone and in combination with compost can be used to augment the phytoremediation efficiency of ryegrass in the As-contaminated spoil.


Assuntos
Arsênio , Lolium , Poluentes do Solo , Animais , Biodegradação Ambiental , Ouro , Humanos , Esterco , Mineração , Solo
17.
Environ Res ; 204(Pt A): 111927, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34464617

RESUMO

Dehydration of food waste is a technique in which food waste is dewatered to form a low moisture product. This research characterised the physicochemical properties of different dehydrated food waste products and examined their value in improving physical, biological, and chemical properties of soils. Dehydrated food waste products were slightly acidic (4.7-5.1) with high levels of electrical conductivity (EC) (4.83-7.64 mS cm-1). The products were composed of complex carbohydrates, polysaccharides, alcohols, phenols, carboxylic acid, lipids, and fats and contained high levels of total and available nutrients. Dehydrated food wastes slightly impacted the soil pH; however, they significantly increased soil EC, which may cause soil salinity when applied repeatedly. The food waste products also increased macro-nutrients (N, P, and K) for plants across different soil types. Carbon and nutrients in dehydrated food waste increased microbial activity, measured by basal respiration. Delayed germination and reduced plant growth of corn (Zea mays) and wheat (Triticum aestivum) plants were observed at high application rates of dehydrated food waste. This may have resulted from a combination of phytotoxins, anoxic conditions, salinity as well as the water-repellent nature of dehydrated food waste. However, release of nutrients increased nutrient uptake and plant biomass in corn and wheat plants at low levels of food waste application. The dehydrated food waste products may require composting prior to soil application or incorporation into soil for a long duration prior to planting. These processes will overcome the limitations of phytotoxins, anoxic conditions, salinity, and water repellence. Further work is required to optimise the levels of dehydrated food waste application to improve soil health and crop productivity.


Assuntos
Eliminação de Resíduos , Solo , Fertilizantes , Alimentos , Resíduos
18.
Environ Res ; 212(Pt A): 113140, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35314164

RESUMO

In recent years, researchers have proven that the employment of natural green components in the biogenesis of nanoparticles from microalgae species is one of the ways to delight the global environment issues. The application of nanotechnology with the exploitation of phycochemical produced from algae species is known as 'phyconanotechnology'. The use of biological compounds by microalgae as reducing agents for the synthesis of inorganic nanoparticles has shown promising results such as cost-effective and environmentally friendly. Different classifications of algae such as brown algae, red algae, green algae, and cyanobacteria are studied for the synthesis of different types of metal nanoparticles. It is also an important motive to acknowledge the mechanisms of the microalgae-mediated biosynthesis of nanoparticles via an intracellular pathway or extracellular pathway. Besides, microalgae species as biogenic sources preclude the use of conventional methods reagents, such as sodium borohydride (NaBH4) and N,N-dimethylformamide (DMF), which further consolidates their position as the best choice for sustainable (economically and environmentally) nanoparticle synthesis compared to the conventional nanoparticles synthesis pathway.


Assuntos
Cianobactérias , Nanopartículas Metálicas , Microalgas , Cianobactérias/metabolismo , Nanopartículas Metálicas/química , Microalgas/metabolismo , Nanotecnologia/métodos , Plantas
19.
Environ Res ; 212(Pt D): 113543, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35613631

RESUMO

Nanotechnology has a wide range of agricultural applications, with emphasize on the development of novel nano-agrochemicals such as, nano-fertilizer and nano-pesticides. It has a significant impact on sustainable agriculture by increasing agricultural productivity, while reducing the use of inorganic fertilizers, pesticides, and herbicides. Nano-coating delivery methods for agrochemicals have improved agrochemical effectiveness, safety, and consistency. Biosynthesis of nanoparticles (NPs) has recently been recognized as an effective tool, contrary to chemically derived NPs, for plant abiotic and biotic stress control, and crop improvement. In this regard, fungi have tremendous scope and importance for producing biogenic NPs of various sizes, shapes, and characteristics. Fungi are potential candidates for synthesis of biogenic NPs due to their enhanced bioavailability, biological activity, and higher metal tolerance. However, their biomimetic properties and high capacity for dispersion in soil, water environments, and foods may have negative environmental consequences. Furthermore, their bioaccumulation raises significant concerns about the novel properties of nanomaterials potentially causing adverse biological effects, including toxicity. This review provides a concise outline of the growing role of fungal-mediated metal NPs synthesis, its potential applications in crop field, and associated issues of nano-pollution in soil and its future implications.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Praguicidas , Agricultura/métodos , Fertilizantes/análise , Fungos , Nanopartículas/química , Nanopartículas/toxicidade , Nanotecnologia/métodos , Solo
20.
Environ Res ; 209: 112875, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35122743

RESUMO

Toxic and hazardous waste poses a serious threat to human health and the environment. Green remediation technologies are required to manage such waste materials, which is a demanding and difficult task. Here, effort was made to explore the role of Pseudomonas aeruginosa SR17 in alleviating naphthalene via catabolism and simultaneously producing biosurfactant. The results showed up to 89.2% naphthalene degradation at 35 °C and pH 7. The GC/MS analysis revealed the generation of naphthalene degradation intermediates. Biosurfactant production led to the reduction of surface tension of the culture medium to 34.5 mN/m. The biosurfactant was further characterized as rhamnolipids. LC-MS of the column purified biosurfactant revealed the presence of both mono and di rhamnolipid congeners. Rhamnolipid find tremendous application in medical field and as well as in detergent industry and since they are of biological origin, they can be used as favorable alternative against their chemical counterparts. The study demonstrated that catabolism of naphthalene and concurrent formation of rhamnolipid can result in a dual activity process, namely environmental cleanup and production of a valuable microbial metabolite. Additionally, the present-day application of rhamnolipids is highlighted.


Assuntos
Glicolipídeos , Tensoativos , Biodegradação Ambiental , Glicolipídeos/química , Glicolipídeos/metabolismo , Humanos , Naftalenos , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA