Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(38): 19116-19125, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31427514

RESUMO

Cable bacteria of the family Desulfobulbaceae form centimeter-long filaments comprising thousands of cells. They occur worldwide in the surface of aquatic sediments, where they connect sulfide oxidation with oxygen or nitrate reduction via long-distance electron transport. In the absence of pure cultures, we used single-filament genomics and metagenomics to retrieve draft genomes of 3 marine Candidatus Electrothrix and 1 freshwater Ca. Electronema species. These genomes contain >50% unknown genes but still share their core genomic makeup with sulfate-reducing and sulfur-disproportionating Desulfobulbaceae, with few core genes lost and 212 unique genes (from 197 gene families) conserved among cable bacteria. Last common ancestor analysis indicates gene divergence and lateral gene transfer as equally important origins of these unique genes. With support from metaproteomics of a Ca. Electronema enrichment, the genomes suggest that cable bacteria oxidize sulfide by reversing the canonical sulfate reduction pathway and fix CO2 using the Wood-Ljungdahl pathway. Cable bacteria show limited organotrophic potential, may assimilate smaller organic acids and alcohols, fix N2, and synthesize polyphosphates and polyglucose as storage compounds; several of these traits were confirmed by cell-level experimental analyses. We propose a model for electron flow from sulfide to oxygen that involves periplasmic cytochromes, yet-unidentified conductive periplasmic fibers, and periplasmic oxygen reduction. This model proposes that an active cable bacterium gains energy in the anodic, sulfide-oxidizing cells, whereas cells in the oxic zone flare off electrons through intense cathodic oxygen respiration without energy conservation; this peculiar form of multicellularity seems unparalleled in the microbial world.


Assuntos
Proteínas de Bactérias/metabolismo , Evolução Biológica , Deltaproteobacteria/genética , Deltaproteobacteria/fisiologia , Genoma Bacteriano , Proteoma/análise , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Ciclo do Carbono , Movimento Celular , Quimiotaxia , Citocromos/metabolismo , Deltaproteobacteria/classificação , Transporte de Elétrons , Sedimentos Geológicos/microbiologia , Nitratos/metabolismo , Oxirredução , Oxigênio/metabolismo , Filogenia , Homologia de Sequência , Sulfetos/metabolismo
2.
Environ Microbiol ; 23(5): 2605-2616, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33760391

RESUMO

Cable bacteria (CB) are Desulfobulbaceae that couple sulphide oxidation to oxygen reduction over centimetre distances by mediating electric currents. Recently, it was suggested that the CB clade is composed of two genera, Ca. Electronema and Ca. Electrothrix, with distinct freshwater and marine habitats respectively. However, only a few studies have reported CB from freshwater sediment, making this distinction uncertain. Here, we report novel data to show that salinity is a controlling factor for the diversity and the species composition within CB populations. CB sampled from a freshwater site (salinity 0.3) grouped into Ca. Electronema and could not grow under brackish conditions (salinity 21), whereas CB from a brackish site (salinity 21) grouped into Ca. Electrothrix and decreased by 93% in activity under freshwater conditions. On a regional scale (Baltic Sea), salinity significantly influenced species richness and composition. However, other environmental factors, such as temperature and quantity and quality of organic matter were also important to explain the observed variation. A global survey of 16S rRNA gene amplicon sequencing revealed that the two genera did not co-occur likely because of competitive exclusion and identified a possible third genus.


Assuntos
Deltaproteobacteria , Salinidade , Bactérias/genética , Deltaproteobacteria/genética , Filogenia , RNA Ribossômico 16S/genética
3.
New Phytol ; 232(5): 2138-2151, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33891715

RESUMO

Cable bacteria are sulfide-oxidising, filamentous bacteria that reduce toxic sulfide levels, suppress methane emissions and drive nutrient and carbon cycling in sediments. Recently, cable bacteria have been found associated with roots of aquatic plants and rice (Oryza sativa). However, the extent to which cable bacteria are associated with aquatic plants in nature remains unexplored. Using newly generated and public 16S rRNA gene sequence datasets combined with fluorescence in situ hybridisation, we investigated the distribution of cable bacteria around the roots of aquatic plants, encompassing seagrass (including seagrass seedlings), rice, freshwater and saltmarsh plants. Diverse cable bacteria were found associated with roots of 16 out of 28 plant species and at 36 out of 55 investigated sites, across four continents. Plant-associated cable bacteria were confirmed across a variety of ecosystems, including marine coastal environments, estuaries, freshwater streams, isolated pristine lakes and intensive agricultural systems. This pattern indicates that this plant-microbe relationship is globally widespread and neither obligate nor species specific. The occurrence of cable bacteria in plant rhizospheres may be of general importance to vegetation vitality, primary productivity, coastal restoration practices and greenhouse gas balance of rice fields and wetlands.


Assuntos
Ecossistema , Oxigênio , Bactérias/genética , Sedimentos Geológicos , Raízes de Plantas , RNA Ribossômico 16S/genética , Rizosfera
4.
Environ Microbiol ; 20(8): 3031-3041, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29971901

RESUMO

Cable bacteria have been reported in sediments from marine and freshwater locations, but the environmental factors that regulate their growth in natural settings are not well understood. Most prominently, the physiological limit of cable bacteria in terms of oxygen availability remains poorly constrained. In this study, we investigated the presence, activity and diversity of cable bacteria in relation to a natural gradient in bottom water oxygenation in a depth transect of the Eastern Gotland Basin (Baltic Sea). Cable bacteria were identified by FISH at the oxic and transiently oxic sites, but not at the permanently anoxic site. Three species of the candidate genus Electrothrix, i.e. marina, aarhusiensis and communis were found coexisting within one site. The highest filament density (33 m cm-2 ) was associated with a 6.3 mm wide zone depleted in both oxygen and free sulphide, and the presence of an electric field resulting from the electrogenic sulphur oxidizing metabolism of cable bacteria. However, the measured filament densities and metabolic activities remained low overall, suggesting a limited impact of cable bacteria at the basin level. The observed bottom water oxygen levels (< 5 µM) are the lowest so far reported for cable bacteria, thus expanding their known environmental distribution.


Assuntos
Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Oxigênio/análise , Água do Mar/microbiologia , Bactérias/química , Bactérias/isolamento & purificação , Países Bálticos , Água Doce/análise , Água Doce/microbiologia , Sedimentos Geológicos/química , Oxirredução , Oxigênio/metabolismo , Água do Mar/análise , Sulfetos/metabolismo
5.
Nature ; 491(7423): 218-21, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-23103872

RESUMO

Oxygen consumption in marine sediments is often coupled to the oxidation of sulphide generated by degradation of organic matter in deeper, oxygen-free layers. Geochemical observations have shown that this coupling can be mediated by electric currents carried by unidentified electron transporters across centimetre-wide zones. Here we present evidence that the native conductors are long, filamentous bacteria. They abounded in sediment zones with electric currents and along their length they contained strings with distinct properties in accordance with a function as electron transporters. Living, electrical cables add a new dimension to the understanding of interactions in nature and may find use in technology development.


Assuntos
Deltaproteobacteria/metabolismo , Condutividade Elétrica , Organismos Aquáticos/citologia , Organismos Aquáticos/metabolismo , Organismos Aquáticos/ultraestrutura , Deltaproteobacteria/citologia , Deltaproteobacteria/ultraestrutura , Dinamarca , Transporte de Elétrons , Sedimentos Geológicos/microbiologia , Vidro , Microesferas , Dados de Sequência Molecular , Tipagem Molecular , Oceanos e Mares , Oxigênio/metabolismo , Porosidade , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Sulfetos/metabolismo
6.
Nature ; 463(7284): 1071-4, 2010 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-20182510

RESUMO

Some bacteria are capable of extracellular electron transfer, thereby enabling them to use electron acceptors and donors without direct cell contact. Beyond the micrometre scale, however, no firm evidence has previously existed that spatially segregated biogeochemical processes can be coupled by electric currents in nature. Here we provide evidence that electric currents running through defaunated sediment couple oxygen consumption at the sediment surface to oxidation of hydrogen sulphide and organic carbon deep within the sediment. Altering the oxygen concentration in the sea water overlying the sediment resulted in a rapid (<1-h) change in the hydrogen sulphide concentration within the sediment more than 12 mm below the oxic zone, a change explicable by transmission of electrons but not by diffusion of molecules. Mass balances indicated that more than 40% of total oxygen consumption in the sediment was driven by electrons conducted from the anoxic zone. A distinct pH peak in the oxic zone could be explained by electrochemical oxygen reduction, but not by any conventional sets of aerobic sediment processes. We suggest that the electric current was conducted by bacterial nanowires combined with pyrite, soluble electron shuttles and outer-membrane cytochromes. Electrical communication between distant chemical and biological processes in nature adds a new dimension to our understanding of biogeochemistry and microbial ecology.


Assuntos
Condutividade Elétrica , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Água do Mar/microbiologia , Bactérias/metabolismo , Citocromos/metabolismo , Dinamarca , Difusão , Eletroquímica , Transporte de Elétrons , Elétrons , Sulfeto de Hidrogênio/análise , Sulfeto de Hidrogênio/química , Concentração de Íons de Hidrogênio , Ferro/química , Nanofios/microbiologia , Oxigênio/análise , Oxigênio/metabolismo , Consumo de Oxigênio , Porosidade , Sulfetos/química
7.
Can J Microbiol ; 62(6): 530-7, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27104296

RESUMO

Measurements of porewater O2, pH, and H2S microprofiles in intact sediment cores collected in a northern saltmarsh in the St. Lawrence Estuary (Quebec, Canada) revealed the occurrence of electrogenic sulfur oxidation (e-SOx) by filamentous "cable" bacteria in submerged marsh pond sediments in the high marsh. In summer, the geochemical fingerprint of e-SOx was apparent in intact cores, while in fall, cable bacteria were detected by fluorescence in situ hybridization and the characteristic geochemical signature of e-SOx was observed only upon prolonged incubation. In exposed, unvegetated creek bank sediments sampled in the low marsh in summer, cable bacteria developed only in repacked cores of sieved (500 µm), homogenized sediments. These results suggest that e-SOx is suppressed by the activity of macrofauna in exposed, unvegetated marsh sediments. A reduced abundance of benthic invertebrates may promote e-SOx development in marsh ponds, which are dominant features of subarctic saltmarshes as in the St. Lawrence Estuary.


Assuntos
Bactérias/metabolismo , Oxigênio/metabolismo , Enxofre/metabolismo , Estuários , Geografia , Sedimentos Geológicos/microbiologia , Concentração de Íons de Hidrogênio , Hibridização in Situ Fluorescente , Oxirredução , Quebeque , Estações do Ano , Áreas Alagadas
8.
Appl Environ Microbiol ; 81(17): 6003-11, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26116678

RESUMO

In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures and electric fields indicated electron transfer between vertically separated anodic and cathodic half-reactions. Fluorescence in situ hybridization revealed the presence of Desulfobulbaceae filaments. In addition, in situ measurements of oxygen, pH, and electric potential distributions in the waterlogged banks of Giber Å demonstrated the presence of distant electric redox coupling in naturally occurring freshwater sediment. At the same site, filamentous Desulfobulbaceae with cable bacterium morphology were found to be present. Their 16S rRNA gene sequence placed them as a distinct sister group to the known marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary origin of the cable phenotype within Desulfobulbaceae with subsequent diversification into a freshwater and a marine lineage.


Assuntos
Deltaproteobacteria/química , Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Deltaproteobacteria/classificação , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Eletricidade , Transporte de Elétrons , Dados de Sequência Molecular , Oxirredução , Oxigênio/metabolismo , Filogenia , Sulfetos/metabolismo
9.
Proc Natl Acad Sci U S A ; 107(3): 1148-53, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-20080540

RESUMO

Benthic foraminifers inhabit a wide range of aquatic environments including open marine, brackish, and freshwater environments. Here we show that several different and diverse foraminiferal groups (miliolids, rotaliids, textulariids) and Gromia, another taxon also belonging to Rhizaria, accumulate and respire nitrates through denitrification. The widespread occurrence among distantly related organisms suggests an ancient origin of the trait. The diverse metabolic capacity of these organisms, which enables them to respire with oxygen and nitrate and to sustain respiratory activity even when electron acceptors are absent from the environment, may be one of the reasons for their successful colonization of diverse marine sediment environments. The contribution of eukaryotes to the removal of fixed nitrogen by respiration may equal the importance of bacterial denitrification in ocean sediments.


Assuntos
Foraminíferos/metabolismo , Nitratos/metabolismo , Rhizaria/metabolismo , Evolução Molecular , Filogenia , Especificidade da Espécie
10.
Nature ; 443(7107): 93-6, 2006 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-16957731

RESUMO

Benthic foraminifera are unicellular eukaryotes found abundantly in many types of marine sediments. Many species survive and possibly reproduce in anoxic habitats, but sustainable anaerobic metabolism has not been previously described. Here we demonstrate that the foraminifer Globobulimina pseudospinescens accumulates intracellular nitrate stores and that these can be respired to dinitrogen gas. The amounts of nitrate detected are estimated to be sufficient to support respiration for over a month. In a Swedish fjord sediment where G. pseudospinescens is the dominant foraminifer, the intracellular nitrate pool in this species accounted for 20% of the large, cell-bound, nitrate pool present in an oxygen-free zone. Similarly high nitrate concentrations were also detected in foraminifera Nonionella cf. stella and a Stainforthia species, the two dominant benthic taxa occurring within the oxygen minimum zone of the continental shelf off Chile. Given the high abundance of foraminifera in anoxic marine environments, these new findings suggest that foraminifera may play an important role in global nitrogen cycling and indicate that our understanding of the complexity of the marine nitrogen cycle is far from complete.


Assuntos
Células Eucarióticas/metabolismo , Nitritos/metabolismo , Anaerobiose , Archaea/genética , Chile , Células Eucarióticas/ultraestrutura , Sedimentos Geológicos/química , Nitrogênio/metabolismo , Oxigênio/metabolismo , Suécia
11.
ISME J ; 16(1): 50-57, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34215856

RESUMO

Cable bacteria (CB) are filamentous Desulfobulbaceae that split the energy-conserving reaction of sulfide oxidation into two half reactions occurring in distinct cells. CB can use nitrate, but the reduction pathway is unknown, making it difficult to assess their direct impact on the N-cycle. Here we show that the freshwater cable bacterium Ca. Electronema sp. GS performs dissimilatory nitrate reduction to ammonium (DNRA). 15NO3--amended sediment with Ca. Electronema sp. GS showed higher rates of DNRA and nitrite production than sediment without Ca. Electronema sp. GS. Electron flux from sulfide oxidation, inferred from electric potential (EP) measurements, matched the electron flux needed to drive CB-mediated nitrate reduction to nitrite and ammonium. Ca. Electronema sp. GS expressed a complete nap operon for periplasmic nitrate reduction to nitrite, and a putative octaheme cytochrome c (pOCC), whose involvement in nitrite reduction to ammonium remains to be verified. Phylogenetic analysis suggests that the capacity for DNRA was acquired in multiple events through horizontal gene transfer from different organisms, before CB split into different salinity niches. The architecture of the nitrate reduction system suggests absence of energy conservation through oxidative phosphorylation, indicating that CB primarily conserve energy through the half reaction of sulfide oxidation.


Assuntos
Compostos de Amônio , Nitratos , Compostos de Amônio/metabolismo , Bactérias/genética , Bactérias/metabolismo , Desnitrificação , Água Doce , Nitratos/metabolismo , Oxirredução , Filogenia
12.
Environ Sci Technol ; 45(3): 1048-54, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21174468

RESUMO

Knowledge on bioavailable ammonium sensu strictu (i.e., immediately available for cellular uptake) in soil is required to understand nutrient uptake processes in microorganisms and thus of vital importance for plant production. We here present a novel ammonium biosensor approach based on the lithoautotrophic ammonia-oxidizing bacterium Nitrosomonas europaea transformed with a luxAB sensor plasmid. Bioluminescence-based ammonium detection was achieved within 10 min with a quantification limit in liquid samples of ∼20 µM and a linear response range up to 400 µM. Biosensor and conventional chemical quantification of ammonium in soil solutions agreed well across a range of sample and assay conditions. The biosensor was subsequently applied for a solid phase-contact assay allowing for direct interaction of biosensor cells with soil particle-associated (i.e., exchangeable plus fixed) ammonium. The assay successfully quantified bioavailable ammonium even in unfertilized soil and demonstrated markedly higher ratios of bioavailable ammonium to water- or 2 M KCl-exchangeable ammonium in anoxic soil than in corresponding oxic soil. Particle-associated ammonium contributed by at least 74% and 93% of the total bioavailable pool in oxic and anoxic soil, respectively. The N. europaea biosensor should have broad relevance for environmental monitoring of bioavailable ammonium and processes depending on ammonium bioavailability.


Assuntos
Técnicas Biossensoriais/métodos , Monitoramento Ambiental/métodos , Nitrosomonas europaea/metabolismo , Compostos de Amônio Quaternário/metabolismo , Poluentes do Solo/metabolismo , Concentração de Íons de Hidrogênio , Compostos de Amônio Quaternário/análise , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise
13.
Sci Adv ; 7(7)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33568484

RESUMO

The electric wires of cable bacteria possibly support a unique respiration mode with a few oxygen-reducing cells flaring off electrons, while oxidation of the electron donor and the associated energy conservation and growth is allocated to other cells not exposed to oxygen. Cable bacteria are centimeter-long, multicellular, filamentous Desulfobulbaceae that transport electrons across oxic-anoxic interfaces in aquatic sediments. From observed distortions of the oxic-anoxic interface, we derived oxygen consumption rates of individual cable bacteria and found biomass-specific rates of unheard magnitude in biology. Tightly controlled behavior, possibly involving intercellular electrical signaling, was found to generally keep <10% of individual filaments exposed to oxygen. The results strengthen the hypothesis that cable bacteria indeed have evolved an exceptional way to take the full energetic advantages of aerobic respiration and let >90% of the cells metabolize in the convenient absence of oxidative stress.

14.
Nat Commun ; 11(1): 1878, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313021

RESUMO

Methane is the second most important greenhouse gas after carbon dioxide and approximately 11% of the global anthropogenic methane emissions originate from rice fields. Sulfate amendment is a mitigation strategy to reduce methane emissions from rice fields because sulfate reducers and methanogens compete for the same substrates. Cable bacteria are filamentous bacteria known to increase sulfate levels via electrogenic sulfide oxidation. Here we show that one-time inoculation of rice-vegetated soil pots with cable bacteria increases the sulfate inventory 5-fold, which leads to the reduction of methane emissions by 93%, compared to control pots lacking cable bacteria. Promoting cable bacteria in rice fields by enrichment or sensible management may thus become a strategy to reduce anthropogenic methane emissions.


Assuntos
Bactérias/metabolismo , Metano/metabolismo , Oryza/metabolismo , Solo/química , Agricultura , Ciclo do Carbono , Mudança Climática , Efeito Estufa , Gases de Efeito Estufa , Concentração de Íons de Hidrogênio , Metano/análise , Microeletrodos , Microbiologia do Solo , Sulfatos/metabolismo
15.
ISME J ; 14(5): 1233-1246, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32042102

RESUMO

Cable bacteria are filamentous members of the Desulfobulbaceae family that oxidize sulfide with oxygen or nitrate by transferring electrons over centimeter distances in sediments. Recent studies show that freshwater sediments can support populations of cable bacteria at densities comparable to those found in marine environments. This is surprising since sulfide availability is presumably low in freshwater sediments due to sulfate limitation of sulfate reduction. Here we show that cable bacteria stimulate sulfate reduction in freshwater sediment through promotion of sulfate availability. Comparing experimental freshwater sediments with and without active cable bacteria, we observed a three- to tenfold increase in sulfate concentrations and a 4.5-fold increase in sulfate reduction rates when cable bacteria were present, while abundance and community composition of sulfate-reducing microorganisms (SRM) were unaffected. Correlation and ANCOVA analysis supported the hypothesis that the stimulation of sulfate reduction activity was due to relieve of the kinetic limitations of the SRM community through the elevated sulfate concentrations in sediments with cable bacteria activity. The elevated sulfate concentration was caused by cable bacteria-driven sulfide oxidation, by sulfate production from an indigenous sulfide pool, likely through cable bacteria-mediated dissolution and oxidation of iron sulfides, and by enhanced retention of sulfate, triggered by an electric field generated by the cable bacteria. Cable bacteria in freshwater sediments may thus be an integral component of a cryptic sulfur cycle and provide a mechanism for recycling of the scarce resource sulfate, stimulating sulfate reduction. It is possible that this stimulation has implication for methanogenesis and greenhouse gas emissions.


Assuntos
Bactérias/metabolismo , Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Enxofre/metabolismo , Crescimento Quimioautotrófico , Transporte de Elétrons , Nitratos , Oxirredução , Oxigênio , Sulfatos , Sulfetos
18.
Front Microbiol ; 8: 617, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28473806

RESUMO

A substantial nitrate pool is stored within living cells in various benthic marine environments. The fate of this bioavailable nitrogen differs according to the organisms managing the intracellular nitrate (ICN). While some light has been shed on the nitrate carried by diatoms and foraminiferans, no study has so far followed the nitrate kept by gromiids. Gromiids are large protists and their ICN concentration can exceed 1000x the ambient nitrate concentration. In the present study we investigated gromiids from diverse habitats and showed that they contained nitrate at concentrations ranging from 1 to 370 mM. We used 15N tracer techniques to investigate the source of this ICN, and found that it originated both from active nitrate uptake from the environment and from intracellular production, most likely through bacterial nitrification. Microsensor measurements showed that part of the ICN was denitrified to N2 when gromiids were exposed to anoxia. Denitrification seemed to be mediated by endobiotic bacteria because antibiotics inhibited denitrification activity. The active uptake of nitrate suggests that ICN plays a role in gromiid physiology and is not merely a consequence of the gromiid hosting a diverse bacterial community. Measurements of aerobic respiration rates and modeling of oxygen consumption by individual gromiid cells suggested that gromiids may occasionally turn anoxic by their own respiration activity and thus need strategies for coping with this self-inflicted anoxia.

19.
Front Microbiol ; 8: 1198, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28713339

RESUMO

Marine surface sediments, which are replete with sulfate, are typically considered to be devoid of endogenous methanogenesis. Yet, methanogenic archaea are present in those sediments, suggesting a potential for methanogenesis. We used an isotope dilution method based on sediment bag incubation and spiking with 13C-CH4 to quantify CH4 turnover rates in sediment from Aarhus Bay, Denmark. In two independent experiments, highest CH4 production and oxidation rates (>200 pmol cm-3 d-1) were found in the top 0-2 cm, below which rates dropped below 100 pmol cm-3 d-1 in all other segments down to 16 cm. This drop in overall methane turnover with depth was accompanied by decreasing rates of organic matter mineralization with depth. Molecular analyses based on quantitative PCR and MiSeq sequencing of archaeal 16S rRNA genes showed that the abundance of methanogenic archaea also peaked in the top 0-2 cm segment. Based on the community profiling, hydrogenotrophic and methylotrophic methanogens dominated among the methanogenic archaea in general, suggesting that methanogenesis in surface sediment could be driven by both CO2 reduction and fermentation of methylated compounds. Our results show the existence of elevated methanogenic activity and a dynamic recycling of CH4 at low concentration in sulfate-rich marine surface sediment. Considering the common environmental conditions found in other coastal systems, we speculate that such a cryptic methane cycling can be ubiquitous.

20.
Ann Rev Mar Sci ; 7: 425-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25251266

RESUMO

The discovery of electric currents in marine sediments arose from a simple observation that conventional biogeochemistry could not explain: Sulfide oxidation in one place is closely coupled to oxygen reduction in another place, centimeters away. After experiments demonstrated that this resulted from electric coupling, the conductors were found to be long, multicellular, filamentous bacteria, now known as cable bacteria. The spatial separation of oxidation and reduction processes by these bacteria represents a shortcut in the conventional cascade of redox processes and may drive most of the oxygen consumption. In addition, it implies a separation of strong proton generators and consumers and the formation of measurable electric fields, which have several effects on mineral development and ion migration. This article reviews the work on electric currents and cable bacteria published through April 2014, with an emphasis on general trends, thought-provoking consequences, and new questions to address.


Assuntos
Deltaproteobacteria/metabolismo , Condutividade Elétrica , Sedimentos Geológicos , Modelos Teóricos , Oxigênio/química , Sulfetos/química , Deltaproteobacteria/crescimento & desenvolvimento , Eletroquímica , Transporte de Elétrons , Compostos Ferrosos/química , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA