Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Bioresour Technol ; 387: 129581, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37517709

RESUMO

Lindane, an organochlorine pesticide, negatively affects living beings and the ecosystem. In this study, the potential of 9 Ascomycetes fungi, isolated from an hexachlorocyclohexane dumpsite soil, was tested for biodegradation of lindane. The strain Pleurostoma richardsiae (FN5) showed lindane biodegradation rate constant (K value) of 0.144 d-1 and a half-life of 4.8d. The formation of intermediate metabolites upon lindane degradation including γ-pentachlorocyclohexene, 2,4-dichlorophenol, phenol, benzene, 1,3- cyclohexadiene, and benzoic acid detected by GC-MS and the potential pathway adopted by the novel fungal strain FN5 for lindane biodegradation has been elucidated. The study of gene profiles with reference to linA and linB in strain FN5 confirmed the same protein family with the reported heterologs from other fungal strains in the NCBI database. This study for the first time provides a thorough understanding of lindane biodegradation by a novel soil-borne Ascomycota fungal strain for its possible application in field-scale bioremediation.


Assuntos
Ascomicetos , Hexaclorocicloexano , Hexaclorocicloexano/metabolismo , Biodegradação Ambiental , Solo , Ecossistema , Cinética , Ascomicetos/metabolismo , Microbiologia do Solo
2.
Bioresour Technol ; 373: 128750, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36796731

RESUMO

Free cyanide is a hazardous pollutant released from steel industries. Environmentally-safe remediation of cyanide-contaminated wastewater is required. In this work, Pseudomonas stutzeri (ASNBRI_B12), Trichoderma longibrachiatum (ASNBRI_F9), Trichoderma saturnisporum (ASNBRI_F10) and Trichoderma citrinoviride (ASNBRI_F14) were isolated from blast-furnace wastewater and activated-sludge by enrichment culture. Elevated microbial growth, rhodanese activity (82 %) and GSSG (128 %) were observed with 20 mg-CN L-1. Cyanide degradation > 99 % on 3rd d as evaluated through ion chromatography, followed by first-order kinetics (r2 = 0.94-0.99). Cyanide degradation in wastewater (20 mg-CN L-1, pH 6.5) was studied in ASNBRI_F10 and ASNBRI_F14 which displayed increased biomass to 49.7 % and 21.6 % respectively. Maximum cyanide degradation of 99.9 % in 48 h was shown by an immobilized consortium of ASNBRI_F10 and ASNBRI_F14. FTIR analysis revealed that cyanide treatment alters functional groups on microbial cell walls. The novel consortium of T. saturnisporum-T. citrinoviride in the form of immobilized culture can be employed to treat cyanide-contaminated wastewater.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Cianetos/metabolismo , Águas Residuárias , Esgotos , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA