Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Langmuir ; 34(4): 1655-1665, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29294286

RESUMO

Copper zinc tin sulfide (CZTS) nanocrystal inks are promising candidates for the development of cheap, efficient, scalable, and nontoxic photovoltaic (PV) devices. However, optimization of the synthetic chemistry to achieve these goals remains a key challenge. Herein we describe a single-step, aqueous-based synthesis that yields high-quality CZTS nanocrystal inks while also minimizing residual organic impurities. By exploiting simultaneous redox and crystal formation reactions, square-platelet-like CZTS nanocrystals stabilized by Sn2S64- and thiourea are produced. The CZTS synthesis is optimized by using a combination of inductively coupled plasma analysis, Raman spectroscopy, Fourier transform infrared spectroscopy, and synchrotron powder X-ray diffraction to assess the versatility of the synthesis and identify suitable composition ranges for achieving phase-pure CZTS. It is found that mild heat treatment between 185 and 220 °C is most suitable for achieving this because this temperature range is sufficiently high to thermalize existing ligands and ink additives while minimizing tin loss, which is problematic at higher temperatures. The low temperatures required to process these nanocrystal inks to give CZTS thin films are readily amenable to production-scale processes.

2.
Langmuir ; 33(49): 13990-13995, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29064712

RESUMO

The nature of trapped air on submersed ultra-water-repellent interfaces has been investigated. These gaseous layers (plastrons) can last from hours to, in some examples such as the Salvinia molesta fern, months. The interface of submerged superhydrophobic surfaces with carefully controlled micropatterned surface roughness has been probed using synchrotron-based high-resolution X-ray phase tomography. This technique looks in situ, through the aqueous/gas interface in three dimensions. Long-term plastron stability appears to correlate with the appearance of scattered microdroplets <20 µm in diameter that are sandwiched within the 30 µm thick gaseous interfacial layer. These microdroplets are centered on defects or damaged sections within the substrate surface approximately 20-50 µm apart. Such irregularities represent heterogeneous micro/nano-hierarchical structures with varying surface structures and chemistry. The stability of microdroplets is governed by a combination of electrostatic repulsion, contact angle limitations, and a saturated vapor pressure, the latter of which reduces the rate of diffusion of gas out of the air layer, thus increasing underwater longevity. Homogenous surfaces exhibiting purely nano- or micro-regularity do not support such microdroplets, and, as a consequence, plastrons can disappear in <20 h compared with >160 h for surfaces with scattered microdroplets. Such behavior may be a requirement for long-term nonwetting in any system.

3.
Nano Lett ; 16(1): 326-33, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26709529

RESUMO

Quantum sensors based on solid-state spins provide tremendous opportunities in a wide range of fields from basic physics and chemistry to biomedical imaging. However, integrating them into a scanning probe microscope to enable practical, nanoscale quantum imaging is a highly challenging task. Recently, the use of single spins in diamond in conjunction with atomic force microscopy techniques has allowed significant progress toward this goal, but generalization of this approach has so far been impeded by long acquisition times or by the absence of simultaneous topographic information. Here, we report on a scanning quantum probe microscope which solves both issues by employing a nanospin ensemble hosted in a nanodiamond. This approach provides up to an order of magnitude gain in acquisition time while preserving sub-100 nm spatial resolution both for the quantum sensor and topographic images. We demonstrate two applications of this microscope. We first image nanoscale clusters of maghemite particles through both spin resonance spectroscopy and spin relaxometry, under ambient conditions. Our images reveal fast magnetic field fluctuations in addition to a static component, indicating the presence of both superparamagnetic and ferromagnetic particles. We next demonstrate a new imaging modality where the nanospin ensemble is used as a thermometer. We use this technique to map the photoinduced heating generated by laser irradiation of a single gold nanoparticle in a fluid environment. This work paves the way toward new applications of quantum probe microscopy such as thermal/magnetic imaging of operating microelectronic devices and magnetic detection of ion channels in cell membranes.


Assuntos
Nanopartículas de Magnetita/química , Imagem Molecular , Nanodiamantes/química , Nanotecnologia , Compostos Férricos/química , Ouro/química , Microscopia de Força Atômica
4.
Langmuir ; 32(47): 12497-12503, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27778508

RESUMO

Hydrophobic forces play a key role in the processes of collapse and reswelling of thermoresponsive polymers. However, little is known about the dynamics of these processes. Here, thermoresponsive poly(N-isopropylacrylamide)-encapsulated gold nanoparticles (Au-PNIPAM) are heated via nanosecond laser flash photolysis. Photothermal heating via excitation of the localized surface plasmon resonance of the Au nanoparticle cores results in rapid PNIPAM shell collapse within the 10 ns pulse width of the laser. Remarkably, reswelling of the polymer shell takes place in less than 100 ns. A clear pump fluence threshold for the collapse of the PNIPAM shell is demonstrated, below which collapse is not observed. Reswelling takes longer at higher laser intensities.

5.
Nutr Metab (Lond) ; 4: 29, 2007 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-18163914

RESUMO

BACKGROUND: Quantitating fat and lean tissue in isolated body regions may be helpful or required in obesity and health-outcomes research. However, current methods of regional body composition measurement require specialized, expensive equipment such as that used in computed tomography or dual energy x-ray absorptiometry (DEXA). Simple body size or circumference measurement relationships to body composition have been developed but are limited to whole-body applications. We investigated relationships between body size measurements and regional body composition. METHODS: Using DEXA technology we determined the fat and lean tissue composition for six regions of the body in predominantly Caucasian, college-aged men (n = 32) and women (n = 67). Circumference measurements as well as body weight and height were taken for each individual. Equations relating body measurements to a respective regional fat and lean mass were developed using multiple regression analysis. RESULTS: Multiple regression R2 values ranged from 0.4451 to 0.8953 and 0.1697 to 0.7039 for regional fat and lean mass relationships to body measurements, respectively. CONCLUSION: The equations developed in this study offer a simple way of estimating regional body composition in a college-aged adult population. The parameters used in the equations are common body measurements that can be obtained with the use of a measuring tape and weight scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA