Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Biol ; 34(5): R209-R211, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38471452

RESUMO

In many species, metabolic and reproductive functions are coupled to the seasons. Tanycytes, specialized glial cells in the hypothalamus, play an important function in these physiological changes. A new study now shows that light exposure drastically alters the formation of sensory cilia on tanycytes.


Assuntos
Células Ependimogliais , Hipotálamo , Células Ependimogliais/metabolismo , Estações do Ano , Hipotálamo/metabolismo , Neuroglia/metabolismo , Biologia
2.
Thyroid ; 34(2): 261-273, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38115594

RESUMO

Background: Tanycytes are specialized glial cells within the mediobasal hypothalamus that have multiple functions, including hormone sensing and regulation of hypophysiotropic hormone secretion. There are ongoing discussions about the role of tanycytes in regulating the supply of hypothalamic thyroid hormones (THs) through the expression of TH transporters (Slc16a2, Slco1c1) and deiodinases (Dio2, Dio3). In this study, we investigated the potential feedback effect of thyrotropin (TSH) on the transcription of these gatekeeper genes on tanycytes. Methods: We analyzed the changes in the expression of TH-gatekeeper genes, in TSH-stimulated primary tanycytes, using quantitative polymerase chain reaction (qPCR). We also used RNAScope® in brain slices to further reveal the local distribution of the transcripts. In addition, we blocked intracellular pathways and used small-interfering RNA (siRNA) to elucidate differences in the regulation of the gatekeeper genes. Results: TSH elevated messenger RNA (mRNA) levels of Slco1c1, Dio2, and Dio3 in tanycytes, while Slc16a2 was mostly unaffected. Blockade and knockdown of the TSH receptor (TSHR) and antagonization of cAMP response element-binding protein (CREB) clearly abolished the increased expression induced by TSH, indicating PKA-dependent regulation through the TSHR. The TSH-dependent expression of Dio3 and Slco1c1 was also regulated by protein kinase C (PKC), and in case of Dio3, also by extracellular signal-regulated kinase (ERK) activity. Importantly, these gene regulations were specifically found in different subpopulations of tanycytes. Conclusions: This study demonstrates that TSH induces transcriptional regulation of TH-gatekeeper genes in tanycytes through the Tshr/Gαq/PKC pathway, in parallel to the Tshr/Gαs/PKA/CREB pathway. These differential actions of TSH on tanycytic subpopulations appear to be important for coordinating the supply of TH to the hypothalamus and aid its functions.


Assuntos
Células Ependimogliais , Tireotropina , Humanos , Tireotropina/farmacologia , Tireotropina/metabolismo , Células Ependimogliais/metabolismo , Hormônios Tireóideos/metabolismo , Glândula Tireoide/metabolismo , Receptores da Tireotropina/genética , Receptores da Tireotropina/metabolismo , Hormônios Liberadores de Hormônios Hipofisários/metabolismo , Proteína Quinase C/metabolismo
3.
Cell Death Dis ; 15(1): 20, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195526

RESUMO

In recent years, primary familial brain calcification (PFBC), a rare neurological disease characterized by a wide spectrum of cognitive disorders, has been associated to mutations in the sodium (Na)-Phosphate (Pi) co-transporter SLC20A2. However, the functional roles of the Na-Pi co-transporters in the brain remain still largely elusive. Here we show that Slc20a1 (PiT-1) and Slc20a2 (PiT-2) are the most abundant Na-Pi co-transporters expressed in the brain and are involved in the control of hippocampal-dependent learning and memory. We reveal that Slc20a1 and Slc20a2 are differentially distributed in the hippocampus and associated with independent gene clusters, suggesting that they influence cognition by different mechanisms. Accordingly, using a combination of molecular, electrophysiological and behavioral analyses, we show that while PiT-2 favors hippocampal neuronal branching and survival, PiT-1 promotes synaptic plasticity. The latter relies on a likely Otoferlin-dependent regulation of synaptic vesicle trafficking, which impacts the GABAergic system. These results provide the first demonstration that Na-Pi co-transporters play key albeit distinct roles in the hippocampus pertaining to the control of neuronal plasticity and cognition. These findings could provide the foundation for the development of novel effective therapies for PFBC and cognitive disorders.


Assuntos
Cognição , Simportadores , Transporte de Íons , Plasticidade Neuronal/genética , Fosfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA