RESUMO
Neuroimaging research on functional connectivity can provide valuable information on the developmental differentiation of the infant cerebral cortex into its functional areas. We examined healthy neonates to comprehensively map brain functional connectivity using a combination of local measures that uniquely capture the rich spatial structure of cerebral cortex functional connections. Optimal functional MRI scans were obtained in 61 neonates. Local functional connectivity maps were based on Iso-Distance Average Correlation (IDAC) measures. Single distance maps and maps combining three distinct IDAC measures were used to assess different levels of cortical area functional differentiation. A set of brain areas showed higher connectivity than the rest of the brain parenchyma in each local distance map. These areas were consistent with those supporting basic aspects of the neonatal repertoire of adaptive behaviors and included the sensorimotor, auditory and visual cortices, the frontal operculum/anterior insula (relevant for sucking, swallowing and the sense of taste), paracentral lobule (processing anal and urethral sphincter activity), default mode network (relevant for self-awareness), and limbic-emotional structures such as the anterior cingulate cortex, amygdala and hippocampus. However, the results also indicate that brain areas presumed to be actively developing may not necessarily be mature. In fact, combined distance, second-level maps confirmed that the functional differentiation of the cerebral cortex into functional areas in neonates is far from complete. Our results provide a more comprehensive understanding of the developing brain systems, while also highlighting the substantial developmental journey that the neonatal brain must undergo to reach adulthood.
Assuntos
Córtex Cerebral , Imageamento por Ressonância Magnética , Humanos , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Recém-Nascido , Masculino , Feminino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Rede Nervosa/crescimento & desenvolvimento , Mapeamento Encefálico/métodos , Conectoma/métodosRESUMO
As the world becomes more urbanized, more people become exposed to traffic and the risks associated with a higher exposure to road traffic noise increase. Excessive exposure to environmental noise could potentially interfere with functional maturation of the auditory brain in developing individuals. The aim of the present study was to assess the association between exposure to annual average road traffic noise (LAeq) in schools and functional connectivity of key elements of the central auditory pathway in schoolchildren. A total of 229 children from 34 representative schools in the city of Barcelona with ages between 8 and 12 years (49.2% girls) were evaluated. LAeq was obtained as the mean of 2-consecutive day measurements inside classrooms before lessons started following standard procedures to obtain an indicator of long-term road traffic noise levels. A region-of-interest functional connectivity Magnetic Resonance Imaging (MRI) approach was adopted. Functional connectivity maps were generated for the inferior colliculus, medial geniculate body of the thalamus and primary auditory cortex as key levels of the central auditory pathway. Road traffic noise in schools was significantly associated with stronger connectivity between the inferior colliculus and a bilateral thalamic region adjacent to the medial geniculate body, and with stronger connectivity between the medial geniculate body and a bilateral brainstem region adjacent to the inferior colliculus. Such a functional connectivity strengthening effect did not extend to the cerebral cortex. The anatomy of the association implicating subcortical relays suggests that prolonged road traffic noise exposure in developing individuals may accelerate maturation in the basic elements of the auditory pathway. Future research is warranted to establish whether such a faster maturation in early pathway levels may ultimately reduce the developing potential in the whole auditory system.
Assuntos
Vias Auditivas , Ruído dos Transportes , Criança , Feminino , Humanos , Masculino , Ruído dos Transportes/efeitos adversos , Corpos Geniculados , Cidades , Instituições Acadêmicas , Exposição AmbientalRESUMO
BACKGROUND: Road traffic noise is a prevalent and known health hazard. However, little is known yet about its effect on children's cognition. We aimed to study the association between exposure to road traffic noise and the development of working memory and attention in primary school children, considering school-outdoor and school-indoor annual average noise levels and noise fluctuation characteristics, as well as home-outdoor noise exposure. METHODS AND FINDINGS: We followed up a population-based sample of 2,680 children aged 7 to 10 years from 38 schools in Barcelona (Catalonia, Spain) between January 2012 to March 2013. Children underwent computerised cognitive tests 4 times (n = 10,112), for working memory (2-back task, detectability), complex working memory (3-back task, detectability), and inattentiveness (Attention Network Task, hit reaction time standard error, in milliseconds). Road traffic noise was measured indoors and outdoors at schools, at the start of the school year, using standard protocols to obtain A-weighted equivalent sound pressure levels, i.e., annual average levels scaled to human hearing, for the daytime (daytime LAeq, in dB). We also derived fluctuation indicators out of the measurements (noise intermittency ratio, %; and number of noise events) and obtained individual estimated indoor noise levels (LAeq) correcting for classroom orientation and classroom change between years. Home-outdoor noise exposure at home (Lden, i.e., EU indicator for the 24-hour annual average levels) was estimated using Barcelona's noise map for year 2012, according to the European Noise Directive (2002). We used linear mixed models to evaluate the association between exposure to noise and cognitive development adjusting for age, sex, maternal education, socioeconomical vulnerability index at home, indoor or outdoor traffic-related air pollution (TRAP) for corresponding school models or outdoor nitrogen dioxide (NO2) for home models. Child and school were included as nested random effects. The median age (percentile 25, percentile 75) of children in visit 1 was 8.5 (7.8; 9.3) years, 49.9% were girls, and 50% of the schools were public. School-outdoor exposure to road traffic noise was associated with a slower development in working memory (2-back and 3-back) and greater inattentiveness over 1 year in children, both for the average noise level (e.g., â4.83 points [95% CI: â7.21, â2.45], p-value < 0.001, in 2-back detectability per 5 dB in street levels) and noise fluctuation (e.g., â4.38 [â7.08, â1.67], p-value = 0.002, per 50 noise events at street level). Individual exposure to the road traffic average noise level in classrooms was only associated with inattentiveness (2.49 ms [0, 4.81], p-value = 0.050, per 5 dB), whereas indoor noise fluctuation was consistently associated with all outcomes. Home-outdoor noise exposure was not associated with the outcomes. Study limitations include a potential lack of generalizability (58% of mothers with university degree in our study versus 50% in the region) and the lack of past noise exposure assessment. CONCLUSIONS: We observed that exposure to road traffic noise at school, but not at home, was associated with slower development of working memory, complex working memory, and attention in schoolchildren over 1 year. Associations with noise fluctuation indicators were more evident than with average noise levels in classrooms.
Assuntos
Ruído dos Transportes , Criança , Cognição , Estudos de Coortes , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Masculino , Ruído dos Transportes/efeitos adversos , Espanha/epidemiologiaRESUMO
Hospitals host vulnerable people with potentially enhanced sensitivity to air pollutants. We measured particulate matter (PM) including PM1, PM2.5, and PM10 with a portable device in a hospital, a nearby reference building, and ambient air in Shiraz, Iran. Indoor/outdoor (I/O) ratio values were calculated to infer on the origin of size-fractioned PM. The mean hospital indoor concentrations of PM2.5 and PM10 (4.7 and 38.7 µg/m3, respectively) but not PM1 were higher than in the reference building and lower than in ambient air. The highest hospital PM10 mean concentrations were found in the radiotherapy ward (77.5 µg/m3) and radiology ward (70.4 µg/m3) while the lowest were found in the bone marrow transplantation (BMT) ward (18.5 µg/m3) and cardiac surgery ward (19.8 µg/m3). The highest PM2.5 concentrations were found in the radiology (8.7 µg/m3) and orthopaedic wards (7.7 µg/m3) while the lowest were found in the BMT ward (2.8 µg/m3) and cardiac surgery ward (2.8 µg/m3). The I/O ratios and the timing of peak concentrations during the day (7 a.m. to 4 p.m.) indicated the main roles of outdoor air and human activity on the indoor levels. These suggest the need for mechanical ventilation with PM control for a better indoor air quality (IAQ) in the hospital.
Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Hospitais Urbanos , Humanos , Irã (Geográfico) , Tamanho da Partícula , Material Particulado/análiseRESUMO
OBJECTIVE: Air pollution (AP) may affect neurodevelopment, but studies about the effects of AP on the growing human brain are still scarce. We aimed to investigate the effects of prenatal exposure to AP on lateral ventricles (LV) and corpus callosum (CC) volumes in children and to determine whether the induced brain changes are associated with behavioral problems. METHODS: Among the children recruited through a set of representative schools of the city of Barcelona, (Spain) in the Brain Development and Air Pollution Ultrafine Particles in School Children (BREATHE) study, 186 typically developing participants aged 8-12 years underwent brain MRI on the same 1.5â¯Tâ¯MR unit over a 1.5-year period (October 2012-April 2014). Brain volumes were derived from structural MRI scans using automated tissue segmentation. Behavioral problems were assessed using the Strengths and Difficulties Questionnaire (SDQ) and the criteria of the Attention Deficit Hyperactivity Disorder DSM-IV list. Prenatal fine particle (PM2.5) levels were retrospectively estimated at the mothers' residential addresses during pregnancy with land use regression (LUR) models. To determine whether brain structures might be affected by prenatal PM2.5 exposure, linear regression models were run and adjusted for age, sex, intracranial volume (ICV), maternal education, home socioeconomic vulnerability index, birthweight and mothers' smoking status during pregnancy. To test for associations between brain changes and behavioral outcomes, negative binomial regressions were performed and adjusted for age, sex, ICV. RESULTS: Prenatal PM2.5 levels ranged from 11.8 to 39.5⯵g/m3 during the third trimester of pregnancy. An interquartile range increase in PM2.5 level (7⯵g/m3) was significantly linked to a decrease in the body CC volume (mm3) (ßâ¯=â¯-53.7, 95%CI [-92.0, -15.5] corresponding to a 5% decrease of the mean body CC volume) independently of ICV, age, sex, maternal education, socioeconomic vulnerability index at home, birthweight and mothers' smoking status during the third trimester of pregnancy. A 50â¯mm3 decrease in the body CC was associated with a significant higher hyperactivity subscore (Rate Ratio (RR)â¯=â¯1.09, 95%CI [1.01, 1.17) independently of age, sex and ICV. The statistical significance of these results did not survive to False Discovery Rate correction for multiple comparisons. CONCLUSIONS: Prenatal exposure to PM2.5 may be associated with CC volume decrease in children. The consequences might be an increase in behavioral problems.
Assuntos
Poluentes Atmosféricos , Poluição do Ar/estatística & dados numéricos , Corpo Caloso/fisiologia , Exposição Materna/estatística & dados numéricos , Transtornos Mentais/epidemiologia , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Comportamento Problema , Criança , Feminino , Humanos , Masculino , Material Particulado , Gravidez , Estudos Retrospectivos , EspanhaRESUMO
Exposure to green space has been associated with better physical and mental health. Although this exposure could also influence cognitive development in children, available epidemiological evidence on such an impact is scarce. This study aimed to assess the association between exposure to green space and measures of cognitive development in primary schoolchildren. This study was based on 2,593 schoolchildren in the second to fourth grades (7-10 y) of 36 primary schools in Barcelona, Spain (2012-2013). Cognitive development was assessed as 12-mo change in developmental trajectory of working memory, superior working memory, and inattentiveness by using four repeated (every 3 mo) computerized cognitive tests for each outcome. We assessed exposure to green space by characterizing outdoor surrounding greenness at home and school and during commuting by using high-resolution (5 m × 5 m) satellite data on greenness (normalized difference vegetation index). Multilevel modeling was used to estimate the associations between green spaces and cognitive development. We observed an enhanced 12-mo progress in working memory and superior working memory and a greater 12-mo reduction in inattentiveness associated with greenness within and surrounding school boundaries and with total surrounding greenness index (including greenness surrounding home, commuting route, and school). Adding a traffic-related air pollutant (elemental carbon) to models explained 20-65% of our estimated associations between school greenness and 12-mo cognitive development. Our study showed a beneficial association between exposure to green space and cognitive development among schoolchildren that was partly mediated by reduction in exposure to air pollution.
Assuntos
Cognição , Meio Ambiente , Criança , Humanos , Memória , EspanhaRESUMO
BACKGROUND: Although air pollution's short-term effects are well understood to be marked and preventable, its acute neuropsychological effects have, to our knowledge, not yet been studied. We aim to examine the association between daily variation in traffic-related air pollution and attention. METHODS: We conducted a follow-up study from January 2012 to March 2013 in 2,687 school children from 265 classrooms in 39 schools in Barcelona (Catalonia, Spain). We assessed four domains of children's attention processes every 3 months over four repeated visits providing a total of 10,002 computerized tests on 177 different days using the child Attention Network test (ANT). Ambient daily levels of nitrogen dioxide (NO2) and elemental carbon (EC) in particulate matter <2.5 µm (PM2.5) filters were measured at a fixed air quality background monitoring station and in schools. RESULTS: Daily ambient levels of both NO2 and EC were negatively associated with all attention processes (e.g., children in the bottom quartile of daily exposure to ambient NO2 levels had a 14.8 msecond [95% confidence interval, 11.2, 18.4] faster response time than those in the top quartile, which was equivalent to a 1.1-month [0.84, 1.37] retardation in the natural developmental improvement in response speed with age). Similar findings were observed after adjusting for the average indoor (classroom) levels of pollutants. Associations for EC were similar to those for NO2 and robust to several sensitivity analyses. CONCLUSIONS: The short-term association of traffic-related air pollutants with fluctuations in attention adds to the evidence that air pollution may have potential harmful effects on neurodevelopment. See video abstract at, http://links.lww.com/EDE/B158.
Assuntos
Poluição do Ar , Atenção , Carbono , Memória de Curto Prazo , Dióxido de Nitrogênio , Material Particulado , Emissões de Veículos , Criança , Feminino , Humanos , Masculino , Espanha , Fatores de TempoRESUMO
Children are more vulnerable to the effects of environmental elements due to their active developmental processes. Exposure to urban air pollution has been associated with poorer cognitive performance, which is thought to be a result of direct interference with brain maturation. We aimed to assess the extent of such potential effects of urban pollution on child brain maturation using general indicators of vehicle exhaust measured in the school environment and a comprehensive imaging evaluation. A group of 263 children, aged 8 to 12 years, underwent MRI to quantify regional brain volumes, tissue composition, myelination, cortical thickness, neural tract architecture, membrane metabolites, functional connectivity in major neural networks and activation/deactivation dynamics during a sensory task. A combined measurement of elemental carbon and NO2 was used as a putative marker of vehicle exhaust. Air pollution exposure was associated with brain changes of a functional nature, with no evident effect on brain anatomy, structure or membrane metabolites. Specifically, a higher content of pollutants was associated with lower functional integration and segregation in key brain networks relevant to both inner mental processes (the default mode network) and stimulus-driven mental operations. Age and performance (motor response speed) both showed the opposite effect to that of pollution, thus indicating that higher exposure is associated with slower brain maturation. In conclusion, urban air pollution appears to adversely affect brain maturation in a critical age with changes specifically concerning the functional domain.
Assuntos
Poluição do Ar/efeitos adversos , Encéfalo/fisiopatologia , Vias Neurais/fisiopatologia , Emissões de Veículos/toxicidade , Encéfalo/efeitos dos fármacos , Criança , Cognição/fisiologia , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Vias Neurais/efeitos dos fármacosRESUMO
BACKGROUND: Air pollution is a suspected developmental neurotoxicant. Many schools are located in close proximity to busy roads, and traffic air pollution peaks when children are at school. We aimed to assess whether exposure of children in primary school to traffic-related air pollutants is associated with impaired cognitive development. METHODS AND FINDINGS: We conducted a prospective study of children (n = 2,715, aged 7 to 10 y) from 39 schools in Barcelona (Catalonia, Spain) exposed to high and low traffic-related air pollution, paired by school socioeconomic index; children were tested four times (i.e., to assess the 12-mo developmental trajectories) via computerized tests (n = 10,112). Chronic traffic air pollution (elemental carbon [EC], nitrogen dioxide [NO2], and ultrafine particle number [UFP; 10-700 nm]) was measured twice during 1-wk campaigns both in the courtyard (outdoor) and inside the classroom (indoor) simultaneously in each school pair. Cognitive development was assessed with the n-back and the attentional network tests, in particular, working memory (two-back detectability), superior working memory (three-back detectability), and inattentiveness (hit reaction time standard error). Linear mixed effects models were adjusted for age, sex, maternal education, socioeconomic status, and air pollution exposure at home. Children from highly polluted schools had a smaller growth in cognitive development than children from the paired lowly polluted schools, both in crude and adjusted models (e.g., 7.4% [95% CI 5.6%-8.8%] versus 11.5% [95% CI 8.9%-12.5%] improvement in working memory, p = 0.0024). Cogently, children attending schools with higher levels of EC, NO2, and UFP both indoors and outdoors experienced substantially smaller growth in all the cognitive measurements; for example, a change from the first to the fourth quartile in indoor EC reduced the gain in working memory by 13.0% (95% CI 4.2%-23.1%). Residual confounding for social class could not be discarded completely; however, the associations remained in stratified analyses (e.g., for type of school or high-/low-polluted area) and after additional adjustments (e.g., for commuting, educational quality, or smoking at home), contradicting a potential residual confounding explanation. CONCLUSIONS: Children attending schools with higher traffic-related air pollution had a smaller improvement in cognitive development.
Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Encéfalo/efeitos dos fármacos , Desenvolvimento Infantil/efeitos dos fármacos , Cognição/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Emissões de Veículos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Atenção/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Carbono/efeitos adversos , Carbono/análise , Criança , Exposição Ambiental/análise , Feminino , Humanos , Masculino , Memória/efeitos dos fármacos , Veículos Automotores , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Tamanho da Partícula , Material Particulado/efeitos adversos , Material Particulado/análise , Estudos Prospectivos , Instituições Acadêmicas , Classe Social , EspanhaRESUMO
Novel technologies, such as smartphones and small personal continuous air pollution sensors, can now facilitate better personal estimates of air pollution in relation to location. Such information can provide us with a better understanding about whether and how personal exposures relate to residential air pollution estimates, which are normally used in epidemiological studies. The aims of this study were to examine (1) the variability in personal air pollution levels during the day and (2) the relationship between modeled home and school estimates and continuously measured personal air pollution exposure levels in different microenvironments (e.g., home, school, and commute). We focused on black carbon as an indicator of traffic-related air pollution. We recruited 54 school children (aged 7-11) from 29 different schools around Barcelona as part of the BREATHE study, an epidemiological study of the relation between air pollution and brain development. For 2 typical week days during 2012-2013, the children were given a smartphone with CalFit software to obtain information on their location and physical activity level and a small sensor, the micro-aethalometer model AE51, to measure their black carbon levels simultaneously and continuously. We estimated their home and school exposure to PM2.5 filter absorbance, which is well-correlated with black carbon, using a temporally adjusted PM2.5 absorbance land use regression (LUR) model. We found considerable variation in the black carbon levels during the day, with the highest levels measured during commuting periods (geometric mean = 2.8 µg/m(3)) and the lowest levels at home (geometric mean = 1.3 µg/m(3)). Hourly temporally adjusted LUR model estimates for the home and school showed moderate to good correlation with measured personal black carbon levels at home and school (r = 0.59 and 0.68, respectively) and lower correlation with commuting trips (r = 0.32 and 0.21, respectively). The correlation between modeled home estimates and overall personal black carbon levels was 0.62. Personal black carbon levels vary substantially during the day. The correlation between modeled and measured black carbon levels was generally good, with the exception of commuting times. In conclusion, novel technologies, such as smartphones and sensors, provide insights in personal exposure to air pollution.
Assuntos
Poluentes Atmosféricos/análise , Telefone Celular/instrumentação , Exposição Ambiental/análise , Monitoramento Ambiental/instrumentação , Fuligem/análise , Poluição do Ar/análise , Criança , Humanos , Modelos TeóricosRESUMO
Access to detailed comparisons in air quality variations encountered when commuting through a city offers the urban traveller more informed choice on how to minimise personal exposure to inhalable pollutants. In this study we report on an experiment designed to compare atmospheric contaminants inhaled during bus, subway train, tram and walking journeys through the city of Barcelona. Average number concentrations of particles 10-300 nm in size, N, are lowest in the commute using subway trains (N<2.5×10(4) part. cm(-3)), higher during tram travel and suburban walking (2.5×10(4) cm(-3)
Assuntos
Poluentes Atmosféricos/análise , Ar , Exposição por Inalação/análise , Material Particulado/análise , Meios de Transporte , Emissões de Veículos/análise , Ar/análise , Ar/normas , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Espanha , Meios de Transporte/normas , Urbanização , CaminhadaRESUMO
Marathon running significantly increases breathing volumes and, consequently, air pollution inhalation doses. This is of special concern for elite athletes who ventilate at very high rates. However, race organizers and sport governing bodies have little guidance to support events scheduling to protect runners. A key limitation is the lack of hyper-local, high temporal resolution air quality data representative of exposure along the racecourse. This work aimed to understand the air pollution exposures and dose inhaled by athletes, by means of a dynamic monitoring methodology designed for road races. Air quality monitors were deployed during three marathons, monitoring nitrogen dioxide (NO2), ozone (O3), particulate matter (PMx), air temperature, and relative humidity. One fixed monitor was installed at the Start/Finish line and one mobile monitor followed the women elite runner pack. The data from the fixed monitors, deployed prior the race, described daily air pollution trends. Mobile monitors in combination with heatmap analysis facilitated the hyper-local characterization of athletes' exposures and helped identify local hotspots (e.g., areas prone to PM resuspension) which should be preferably bypassed. The estimation of inhaled doses disaggregated by gender and ventilation showed that doses inhaled by last finishers may be equal or higher than those inhaled by first finishers for O3 and PMx, due to longer exposures as well as the increase of these pollutants over time (e.g., 58.2 ± 9.6 and 72.1 ± 23.7 µg of PM2.5 for first and last man during Rome marathon). Similarly, men received significantly higher doses than women due to their higher ventilation rate, with differences of 31-114 µg for NO2, 79-232 µg for O3, and 6-41 µg for PMx. Finally, the aggregated data obtained during the 4 week- period prior the marathon can support better race scheduling by the organizers and provide actionable information to mitigate air pollution impacts on athletes' health and performance.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Material Particulado , Humanos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Feminino , Poluição do Ar/estatística & dados numéricos , Masculino , Corrida/fisiologia , Ozônio/análise , Exposição Ambiental/estatística & dados numéricos , Exposição Ambiental/análise , Exposição por Inalação/estatística & dados numéricos , Exposição por Inalação/análise , Dióxido de Nitrogênio/análise , AtletasRESUMO
Exposure to ambient particulate matter (PM) has been identified as a major global health concern; however, the importance of specific chemical PM components remains uncertain. Recent studies have suggested that carbonaceous aerosols are important detrimental components of the particle mixture. Using time-series methods, we investigated associations between short-term exposure to carbonaceous particles and mortality in London, UK. Daily counts of non-accidental, respiratory, and cardiovascular deaths were obtained between 2010 and 2019. For the same period, daily concentrations of carbonaceous particles: organic (OC), elemental (EC), wood-burning (WC), total carbon (TC) and equivalent black carbon (eBC) were sourced from two centrally located monitoring sites (one urban-traffic and one urban-background). Generalized additive models were used to estimate the percentage change in mortality risk associated with interquartile range increases in particulate concentrations. Lagged effects up to 3 days were examined. Stratified analyses were conducted by age, sex, and season, separate analyses were also performed by site-type. For non-accidental mortality, positive associations were observed for all particle species at lag1, including statistically significant percentage risk changes in WC (0.51% (95%CI: 0.19%, 0.82%) per IQR (0.68 µg/m3)) and OC (0.45% (95%CI: 0.04%, 0.87% per IQR (2.36 µg/m3)). For respiratory deaths, associations were greatest for particulate concentrations averaged over the current and previous 3 days, with increases in risk of 1.70% (95%CI: 0.64%, 2.77%) for WC and 1.31% (95%CI: -0.08%, 2.71%) for OC. No associations were found with cardiovascular mortality. Results were robust to adjustment for particle mass concentrations. Stratified analyses suggested particulate effects were greatest in the summer and respiratory associations more pronounced in females. Our findings are supportive of an association between carbonaceous particles and non-accidental and respiratory mortality. The strongest evidence of an effect was for WC; this is of significance given the rising popularity of wood-burning for residential space heating and energy production across Europe.
Assuntos
Poluentes Atmosféricos , Exposição Ambiental , Material Particulado , Material Particulado/análise , Londres/epidemiologia , Poluentes Atmosféricos/análise , Humanos , Exposição Ambiental/estatística & dados numéricos , Feminino , Carbono/análise , Masculino , Poluição do Ar/estatística & dados numéricos , Pessoa de Meia-Idade , Mortalidade , Idoso , Adulto , Doenças Cardiovasculares/mortalidade , Monitoramento Ambiental , Estações do Ano , Adolescente , Doenças Respiratórias/mortalidade , Criança , Adulto Jovem , Pré-EscolarRESUMO
BACKGROUND: Air pollution is the leading environmental risk factor for health. Assessing outdoor air pollution exposure with detailed spatial and temporal variability in urban areas is crucial for evaluating its health effects. AIM: We developed and compared Land Use Regression (LUR), dispersion (DM), and hybrid (HM) models to estimate outdoor concentrations for NO2, PM2.5, black carbon (BC), and PM2.5-constituents (Fe, Cu, Zn) in Barcelona. METHODS: Two monitoring campaigns were conducted. In the first, NO2 concentrations were measured twice at 984 home addresses and in the second, NO2, PM2.5, and BC were measured four times at 34 points across Barcelona. LUR and DM were constructed using conventional techniques, while HM was developed using Random Forest (RF). Model performance was evaluated using leave-one-out cross-validation (LOOCV) and 10-fold cross-validation (10-CV) for LUR and HM, and by comparing DM and LUR estimates with routine monitoring stations. NO2 levels estimated by all models were externally validated using the home monitoring campaign. Agreement between models was assessed using Spearman correlation (rs) and Bland-Altman (BA) plots. RESULTS: Models showed moderate to good performance. LUR exhibited R2LOOCV of 0.62 (NO2), 0.45 (PM2.5), 0.83 (BC), and 0.85 to 0.89 (PM2.5-constituents). DM model comparison showed R2 values of 0.39 (NO2), 0.26 (PM2.5), and 0.65 (BC). HM models had higher R210-CV 0.64 (NO2), 0.66 (PM2.5), 0.86 (BC), and 0.44 to 0.70 (PM2.5-constituents). Validation for NO2 showed R2 values of 0.56 (LUR), 0.44 (DM), and 0.64 (HM). Correlations between models varied from -0.38 to 0.92 for long-term exposure, and - 0.23 to 0.94 for short-term exposure. BA plots showed good agreement between models, especially for NO2 and BC. CONCLUSIONS: Our models varied substantially, with some models performing better in validation samples (NO2 and BC). Future health studies should use the most accurate methods to minimize bias from exposure measurement error.
RESUMO
INTRODUCTION: The impact of legacy per- and polyfluoroalkyl substances (PFAS) on fetal growth has been well studied, but assessments of next-generation PFAS and PFAS mixtures are sparse and the potential role of fetoplacental hemodynamics has not been studied. We aimed to evaluate associations between prenatal PFAS exposure and fetal growth and fetoplacental hemodynamics. METHODS: We included 747 pregnant women from the BiSC birth cohort (Barcelona, Spain (2018-2021)). Twenty-three PFAS were measured at 32 weeks of pregnancy in maternal plasma, of which 13 were present above detectable levels. Fetal growth was measured by ultrasound, as estimated fetal weight at 32 and 37 weeks of gestation, and weight at birth. Doppler ultrasound measurements for uterine (UtA), umbilical (UmA), and middle cerebral artery (MCA) pulsatility indices (PI), as well as the cerebroplacental ratio (CPR - ratio MCA to UmA), were obtained at 32 weeks to assess fetoplacental hemodynamics. We applied linear mixed effects models to assess the association between singular PFAS and longitudinal fetal growth and PI, and Bayesian Weighted Quantile Sum models to evaluate associations between the PFAS mixture and the aforementioned outcomes, controlled for the relevant covariates. RESULTS: Single PFAS and the mixture tended to be associated with reduced fetal growth and CPR PI, but few associations reached statistical significance. Legacy PFAS PFOS, PFHpA, and PFDoDa were associated with statistically significant decreases in fetal weight z-score of 0.13 (95%CI (-0.22, -0.04), 0.06 (-0.10, 0.01), and 0.05 (-0.10, 0.00), respectively, per doubling of concentration. The PFAS mixture was associated with a non-statistically significant 0.09 decrease in birth weight z-score (95%CI -0.22, 0.04) per quartile increase. CONCLUSION: This study suggests that legacy PFAS may be associated with reduced fetal growth, but associations for next generation PFAS and for the PFAS mixture were less conclusive. Associations between PFAS and fetoplacental hemodynamics warrant further investigation.
RESUMO
BACKGROUND: The evidence on the association between ultrafine (UFP) particles and mortality is still inconsistent. Moreover, health effects of specific UFP sources have not been explored. We assessed the impact of UFP sources on daily mortality in Barcelona, Helsinki, London, and Zurich. METHODS: UFP sources were previously identified and quantified for the four cities: daily contributions of photonucleation, two traffic sources (fresh traffic and urban, with size mode around 30 nm and 70 nm, respectively), and secondary aerosols were obtained from data from an urban background station. Different periods were investigated in each city: Barcelona 2013-2016, Helsinki 2009-2016, London 2010-2016, and Zurich 2011-2014. The associations between total particle number concentrations (PNC) and UFP sources and daily (natural, cardiovascular [CVD], and respiratory) mortality were investigated using city-specific generalized linear models (GLM) with quasi-Poisson regression. RESULTS: We found inconsistent results across cities, sources, and lags for associations with natural, CVD, and respiratory mortality. Increased risk was observed for total PNC and natural mortality in Helsinki (lag 2; 1.3% [0.07%, 2.5%]), CVD mortality in Barcelona (lag 1; 3.7% [0.17%, 7.4%]) and Zurich (lag 0; 3.8% [0.31%, 7.4%]), and respiratory mortality in London (lag 3; 2.6% [0.84%, 4.45%]) and Zurich (lag 1; 9.4% [1.0%, 17.9%]). A similar pattern of associations between health outcomes and total PNC was followed by the fresh traffic source, for which we also found the same associations and lags as for total PNC. The urban source (mostly aged traffic) was associated with respiratory mortality in Zurich (lag 1; 12.5% [1.7%, 24.2%]) and London (lag 3; 2.4% [0.90%, 4.0%]) while the secondary source was associated with respiratory mortality in Zurich (lag 1: 12.0% [0.63%, 24.5%]) and Helsinki (4.7% [0.11%, 9.5%]). Reduced risk for the photonucleation source was observed for respiratory mortality in Barcelona (lag 2, -8.6% [-14.5%, -2.4%]) and for CVD mortality in Helsinki, as this source is present only in clean atmospheres (lag 1, -1.48 [-2.75, -0.21]). CONCLUSIONS: We found inconsistent results across cities, sources and lags for associations with natural, CVD, and respiratory mortality.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Idoso , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Cidades , Humanos , Tamanho da Partícula , Material Particulado/análiseRESUMO
Sparse data exist on the complex natural immunity to SARS-CoV-2 at the population level. We applied a well-validated multiplex serology test in 5000 participants of a general population study in Catalonia in blood samples collected from end June to mid November 2020. Based on responses to fifteen isotype-antigen combinations, we detected a seroprevalence of 18.1% in adults (n = 4740), and modeled extrapolation to the general population of Catalonia indicated a 15.3% seroprevalence. Antibodies persisted up to 9 months after infection. Immune profiling of infected individuals revealed that with increasing severity of infection (asymptomatic, 1-3 symptoms, ≥ 4 symptoms, admitted to hospital/ICU), seroresponses were more robust and rich with a shift towards IgG over IgA and anti-spike over anti-nucleocapsid responses. Among seropositive participants, lower antibody levels were observed for those ≥ 60 years vs < 60 years old and smokers vs non-smokers. Overweight/obese participants vs normal weight had higher antibody levels. Adolescents (13-15 years old) (n = 260) showed a seroprevalence of 11.5%, were less likely to be tested seropositive compared to their parents and had dominant anti-spike rather than anti-nucleocapsid IgG responses. Our study provides an unbiased estimate of SARS-CoV-2 seroprevalence in Catalonia and new evidence on the durability and heterogeneity of post-infection immunity.
Assuntos
SARS-CoV-2 , Adolescente , Adulto , Formação de Anticorpos , Estudos de Coortes , Humanos , Imunoglobulina G/sangue , Estudos Soroepidemiológicos , EspanhaRESUMO
Airborne particulate matter with an aerodynamic diameter smaller than 2.5 µg, PM2.5 was regularly sampled in classrooms (indoor) and playgrounds (outdoor) of primary schools from Barcelona. Three of these schools were located downtown and three in the periphery, representing areas with high and low traffic intensities. These aerosols were analyzed for organic molecular tracers and polycyclic aromatic hydrocarbons (PAHs) to identify the main sources of these airborne particles and evaluate the air quality in the urban location of the schools. Traffic emissions were the main contributors of PAHs to the atmospheres in all schools, with higher average concentrations in those located downtown (1800-2700 pg/m3) than in the periphery (760-1000 pg/m3). The similarity of the indoor and outdoor concentrations of the PAH is consistent with a transfer of outdoor traffic emissions to the indoor classrooms. This observation was supported by the hopane and elemental carbon concentrations in PM2.5, markers of motorized vehicles, that were correlated with PAHs. The concentrations of food-related markers, such as glucoses, sucrose, malic, azelaic and fatty acids, were correlated and were higher in the indoor atmospheres. These compounds were also correlated with plastic additives, such as phthalic acid and diisobutyl, dibutyl and dicyclohexyl phthalates. Clothing constituents, e.g., adipic acid, and fragrances, galaxolide and methyl dihydrojasmonate were also correlated with these indoor air compounds. All these organic tracers were correlated with the organic carbon of PM2.5, which was present in higher concentrations in the indoor than in the outdoor atmospheres.
Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Hidrocarbonetos Policíclicos Aromáticos , Instituições Acadêmicas , Aerossóis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Espanha , Emissões de Veículos/análiseRESUMO
Ultrafine particles (UFP) are suspected of having significant impacts on health. However, there have only been a limited number of studies on sources of UFP compared to larger particles. In this work, we identified and quantified the sources and processes contributing to particle number size distributions (PNSD) using Positive Matrix Factorization (PMF) at six monitoring stations (four urban background and two street canyon) from four European cities: Barcelona, Helsinki, London, and Zurich. These cities are characterised by different meteorological conditions and emissions. The common sources across all stations were Photonucleation, traffic emissions (3 sources, from fresh to aged emissions: Traffic nucleation, Fresh traffic - mode diameter between 13 and 37 nm, and Urban - mode diameter between 44 and 81 nm, mainly traffic but influenced by other sources in some cities), and Secondary particles. The Photonucleation factor was only directly identified by PMF for Barcelona, while an additional split of the Nucleation factor (into Photonucleation and Traffic nucleation) by using NOx concentrations as a proxy for traffic emissions was performed for all other stations. The sum of all traffic sources resulted in a maximum relative contributions ranging from 71 to 94% (annual average) thereby being the main contributor at all stations. In London and Zurich, the relative contribution of the sources did not vary significantly between seasons. In contrast, the high levels of solar radiation in Barcelona led to an important contribution of Photonucleation particles (ranging from 14% during the winter period to 35% during summer). Biogenic emissions were a source identified only in Helsinki (both in the urban background and street canyon stations), that contributed importantly during summer (23% in urban background). Airport emissions contributed to Nucleation particles at urban background sites, as the highest concentrations of this source took place when the wind was blowing from the airport direction in all cities.
Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Emissões de Veículos , Cidades , Europa (Continente) , Londres , Tamanho da Partícula , Material ParticuladoRESUMO
BACKGROUND: Ambient air pollution may increase the risk of overweight and obesity in children. However, available evidence is still scarce and has mainly focused on ambient air pollution exposure occurring at home without considering the school environment. The aim of this study is to assess whether exposure to ambient air pollution at home and school is associated with overweight and obesity in primary school children. METHODS: We studied 2660 children aged 7-10â¯years during 2012 in Barcelona. Child weight and height were measured and age- and sex-specific z-scores for body mass index (zBMI) were calculated using the WHO growth reference 2007. Overweight and obesity were defined using the same reference. Land use regression models were used to estimate levels of nitrogen dioxide (NO2), particulate matter <2.5⯵m (PM2.5), <10⯵m (PM10) and coarse (PMcoarse) at home. Outdoor levels of NO2, PM2.5, elemental carbon (EC), and ultrafine particles (UFP) were measured in the schoolyard. Multilevel mixed linear and ordered logistic models were used to assess the association between ambient air pollution (continuous per interquartile range (IQR) increase and categorical with tertile cutoffs) and zBMI (continuous and ordinal: normal, overweight, obese), after adjusting for socio-demographic characteristics. RESULTS: An IQR increase in PM10-home (5.6⯵g/m3) was associated with a 10% increase in the odds of being overweight or obese (odds ratio (OR)â¯=â¯1.10; 95% CIâ¯=â¯1.00, 1.22). Children exposed to the highest tertile of UFP-school (>27,346 particles/cm3) had a 30% higher odds of being overweight or obese (ORâ¯=â¯1.30; 95%CIâ¯=â¯1.03, 1.64) compared to the lowest tertile of UFP exposure. We also observed that exposure to NO2, PM2.5 or EC at schools was associated with higher odds of overweight or obese at medium compared to low levels of exposure. Home and school exposures did not show any significant associations with zBMI (except PM2.5-school comparing tertile 2 vs tertile 1) but were similar in direction. CONCLUSIONS: This study suggests that exposure to ambient air pollution, especially at school, is associated with childhood risk for overweight and obesity. A cautious interpretation is warranted because associations were not always linear and because school and home air pollution measurements were not directly comparable.