Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 31(4): 561-575, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-34508588

RESUMO

Germline-activating mutations in HRAS cause Costello syndrome (CS), a cancer prone multisystem disorder characterized by reduced postnatal growth. In CS, poor weight gain and growth are not caused by low caloric intake. Here, we show that constitutive plasma membrane translocation and activation of the GLUT4 glucose transporter, via reactive oxygen species-dependent AMP-activated protein kinase α and p38 hyperactivation, occurs in primary fibroblasts of CS patients, resulting in accelerated glycolysis and increased fatty acid synthesis and storage as lipid droplets. An accelerated autophagic flux was also identified as contributing to the increased energetic expenditure in CS. Concomitant inhibition of p38 and PI3K signaling by wortmannin was able to rescue both the dysregulated glucose intake and accelerated autophagic flux. Our findings provide a mechanistic link between upregulated HRAS function, defective growth and increased resting energetic expenditure in CS, and document that targeting p38 and PI3K signaling is able to revert this metabolic dysfunction.


Assuntos
Síndrome de Costello , Síndrome de Costello/genética , Síndrome de Costello/metabolismo , Fibroblastos/metabolismo , Humanos , Oxirredução , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais/genética
2.
Am J Hum Genet ; 107(6): 1062-1077, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33217309

RESUMO

Dysfunction of the endolysosomal system is often associated with neurodegenerative disease because postmitotic neurons are particularly reliant on the elimination of intracellular aggregates. Adequate function of endosomes and lysosomes requires finely tuned luminal ion homeostasis and transmembrane ion fluxes. Endolysosomal CLC Cl-/H+ exchangers function as electric shunts for proton pumping and in luminal Cl- accumulation. We now report three unrelated children with severe neurodegenerative disease, who carry the same de novo c.1658A>G (p.Tyr553Cys) mutation in CLCN6, encoding the late endosomal Cl-/H+-exchanger ClC-6. Whereas Clcn6-/- mice have only mild neuronal lysosomal storage abnormalities, the affected individuals displayed severe developmental delay with pronounced generalized hypotonia, respiratory insufficiency, and variable neurodegeneration and diffusion restriction in cerebral peduncles, midbrain, and/or brainstem in MRI scans. The p.Tyr553Cys amino acid substitution strongly slowed ClC-6 gating and increased current amplitudes, particularly at the acidic pH of late endosomes. Transfection of ClC-6Tyr553Cys, but not ClC-6WT, generated giant LAMP1-positive vacuoles that were poorly acidified. Their generation strictly required ClC-6 ion transport, as shown by transport-deficient double mutants, and depended on Cl-/H+ exchange, as revealed by combination with the uncoupling p.Glu200Ala substitution. Transfection of either ClC-6Tyr553Cys/Glu200Ala or ClC-6Glu200Ala generated slightly enlarged vesicles, suggesting that p.Glu200Ala, previously associated with infantile spasms and microcephaly, is also pathogenic. Bafilomycin treatment abrogated vacuole generation, indicating that H+-driven Cl- accumulation osmotically drives vesicle enlargement. Our work establishes mutations in CLCN6 associated with neurological diseases, whose spectrum of clinical features depends on the differential impact of the allele on ClC-6 function.


Assuntos
Canais de Cloreto/genética , Mutação com Ganho de Função , Doenças Neurodegenerativas/genética , Alelos , Animais , Células CHO , Criança , Cricetulus , Eletrofisiologia , Endossomos/metabolismo , Feminino , Células HeLa , Heterozigoto , Homeostase , Humanos , Concentração de Íons de Hidrogênio , Lactente , Transporte de Íons , Íons , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Macrolídeos/farmacologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Knockout , Microscopia de Vídeo , Transfecção
3.
Clin Genet ; 102(1): 56-60, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35246835

RESUMO

Genetic defect in the nuclear encoded subunits of cytochrome c oxidase are very rare. To date, most deleterious variants affect the mitochondrially encoded subunits of complex IV and the nuclear genes encoded for assembly factors. A biallelic pathogenic variant in the mitochondrial complex IV subunit COX5A was previously reported in a couple of sibs with failure to thrive, lactic acidosis and pulmonary hypertension and a lethal phenotype. Here, we describe a second family with a 11-year-old girl presenting with failure to thrive, lactic acidosis, hypoglycemia and short stature. Clinical exome revealed the homozygous missense variant c.266 T > G in COX5A, which produces a drop of the corresponding protein and a reduction of the COX activity. Compared to the previous observation, this girl showed an attenuated metabolic derangement without involvement of the cardiovascular system and neurodevelopment. Our observation confirms that COX5A recessive variants may cause mitochondrial disease and expands the associated phenotype to less severe presentations.


Assuntos
Acidose Láctica , Nanismo , Hipoglicemia , Acidose Láctica/genética , Acidose Láctica/patologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Insuficiência de Crescimento/genética , Homozigoto , Humanos , Hipoglicemia/genética , Fenótipo
4.
Hum Mutat ; 42(6): 699-710, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33715266

RESUMO

Isolated biochemical deficiency of mitochondrial complex I is the most frequent signature among mitochondrial diseases and is associated with a wide variety of clinical symptoms. Leigh syndrome represents the most frequent neuroradiological finding in patients with complex I defect and more than 80 monogenic causes have been involved in the disease. In this report, we describe seven patients from four unrelated families harboring novel NDUFA12 variants, with six of them presenting with Leigh syndrome. Molecular genetic characterization was performed using next-generation sequencing combined with the Sanger method. Biochemical and protein studies were achieved by enzymatic activities, blue native gel electrophoresis, and western blot analysis. All patients displayed novel homozygous mutations in the NDUFA12 gene, leading to the virtual absence of the corresponding protein. Surprisingly, despite the fact that in none of the analyzed patients, NDUFA12 protein was detected, they present a different onset and clinical course of the disease. Our report expands the array of genetic alterations in NDUFA12 and underlines phenotype variability associated with NDUFA12 defect.


Assuntos
Doença de Leigh/genética , Doenças Mitocondriais/genética , NADPH Desidrogenase/genética , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Consanguinidade , Complexo I de Transporte de Elétrons/genética , Família , Feminino , Predisposição Genética para Doença , Humanos , Itália , Doença de Leigh/complicações , Doença de Leigh/patologia , Masculino , Doenças Mitocondriais/complicações , Doenças Mitocondriais/patologia , Fenótipo , Polimorfismo de Nucleotídeo Único
5.
Neurobiol Dis ; 141: 104880, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32344152

RESUMO

Mitochondrial ribosomal protein large 24 (MRPL24) is 1 of the 82 protein components of mitochondrial ribosomes, playing an essential role in the mitochondrial translation process. We report here on a baby girl with cerebellar atrophy, choreoathetosis of limbs and face, intellectual disability and a combined defect of complexes I and IV in muscle biopsy, caused by a homozygous missense mutation identified in MRPL24. The variant predicts a Leu91Pro substitution at an evolutionarily conserved site. Using human mutant cells and the zebrafish model, we demonstrated the pathological role of the identified variant. In fact, in fibroblasts we observed a significant reduction of MRPL24 protein and of mitochondrial respiratory chain complex I and IV subunits, as well a markedly reduced synthesis of the mtDNA-encoded peptides. In zebrafish we demonstrated that the orthologue gene is expressed in metabolically active tissues, and that gene knockdown induced locomotion impairment, structural defects and low ATP production. The motor phenotype was complemented by human WT but not mutant cRNA. Moreover, sucrose density gradient fractionation showed perturbed assembly of large subunit mitoribosomal proteins, suggesting that the mutation leads to a conformational change in MRPL24, which is expected to cause an aberrant interaction of the protein with other components of the 39S mitoribosomal subunit.


Assuntos
Proteínas Mitocondriais/genética , Transtornos dos Movimentos/genética , Proteínas Ribossômicas/genética , Animais , Cerebelo/patologia , Feminino , Humanos , Lactente , Leviviridae , Masculino , Transtornos dos Movimentos/patologia , Músculo Quadríceps/patologia , Peixe-Zebra
6.
Hum Mol Genet ; 27(11): 1892-1904, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29547997

RESUMO

Microtubules participate in fundamental cellular processes, including chromosomal segregation and cell division, migration and intracellular trafficking. Their proper function is required for correct central nervous system development and operative preservation, and mutations in genes coding tubulins, the constituting units of microtubules, underlie a family of neurodevelopmental and neurodegenerative diseases, collectively known as 'tubulinopathies', characterized by a wide range of neuronal defects resulting from defective proliferation, migration and function. Here, we causally link a previously unreported missense mutation in TUBB2A (c.1249G>A, p.D417N), encoding one of the neuron-specific ß-tubulin isotype II, to a disorder characterized by progressive spastic paraplegia, peripheral sensory-motor polyneuropathy and ataxia. Asp417 is a highly conserved solvent-exposed residue at the site mediating binding of kinesin superfamily motors. Impaired binding to KIF1A, a neuron-specific kinesin required for transport of synaptic vesicle precursors of the disease-associated TUBB2A mutant, was predicted by structural analyses and confirmed experimentally in vitro. We show that overexpression of TUBB2AD417N disrupts the mitotic spindle bipolarity and morphology and affects the M phase entry and length. Differently from the TUBB2AN247K and TUBB2AA248V, two mutants previously identified to affect neurodevelopment, TUBB2AD417N retains the ability to assemble into microtubules. Consistent with the differential clinical and structural impact, TUBB2AA248V does not drastically affect TUBB2A binding to KIF1A, nor mitotic spindle bipolarity. Overall, our data demonstrate a pathogenic role of the p.D417N substitution that is different from previously reported TUBB2A mutations and expand the phenotypic spectrum associated with mutations in this gene.


Assuntos
Deficiência Intelectual/genética , Cinesinas/genética , Espasticidade Muscular/genética , Atrofia Óptica/genética , Paraplegia/genética , Ataxias Espinocerebelares/genética , Degenerações Espinocerebelares/genética , Tubulina (Proteína)/genética , Adolescente , Adulto , Movimento Celular/genética , Proliferação de Células/genética , Criança , Feminino , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/fisiopatologia , Masculino , Microtúbulos/genética , Microtúbulos/patologia , Espasticidade Muscular/diagnóstico por imagem , Espasticidade Muscular/fisiopatologia , Neurônios/metabolismo , Neurônios/patologia , Atrofia Óptica/diagnóstico por imagem , Atrofia Óptica/fisiopatologia , Paraplegia/fisiopatologia , Polineuropatias/genética , Polineuropatias/fisiopatologia , Ligação Proteica , Córtex Sensório-Motor/metabolismo , Córtex Sensório-Motor/fisiopatologia , Fuso Acromático/genética , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/fisiopatologia , Degenerações Espinocerebelares/fisiopatologia
7.
Hum Mol Genet ; 27(15): 2739-2754, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29767723

RESUMO

Multiple mitochondrial dysfunction syndromes (MMDS) comprise a group of severe autosomal recessive diseases characterized by impaired respiration and lipoic acid metabolism, resulting in infantile-onset mitochondrial encephalopathy, non-ketotic hyperglycinemia, myopathy, lactic acidosis and early death. Four different MMDS have been analyzed in detail according to the genes involved in the disease, MMDS1 (NFU1), MMDS2 (BOLA3), MMDS3 (IBA57) and MMDS4 (ISCA2). MMDS5 has recently been described in a clinical case report of patients carrying a mutation in ISCA1, but with no further functional analysis. ISCA1 encodes a mitochondrial protein essential for the assembly of [4Fe-4S] clusters in key metabolic and respiratory enzymes. Here, we describe a patient with a severe early onset leukodystrophy, multiple defects of respiratory complexes and a severe impairment of lipoic acid synthesis. A homozygous missense mutation in ISCA1 (c.29T>G; p.V10G) identified by targeted MitoExome sequencing resulted in dramatic reduction of ISCA1 protein level. The mutation located in the uncleaved presequence severely affected both mitochondrial import and stability of ISCA1. Down-regulation of ISCA1 in HeLa cells by RNAi impaired the biogenesis of mitochondrial [4Fe-4S] proteins, yet could be complemented by expression of wild-type ISCA1. In contrast, the ISCA1 p.V10G mutant protein only partially complemented the defects, closely resembling the biochemical phenotypes observed for ISCA1 patient fibroblasts. Collectively, our comprehensive clinical and biochemical investigations show that the ISCA1 p.V10G mutation functionally impaired mitochondrial [4Fe-4S] protein assembly and hence was causative for the observed clinical defects.


Assuntos
Proteínas Ferro-Enxofre/metabolismo , Leucoencefalopatias/genética , Doenças Mitocondriais/etiologia , Proteínas Mitocondriais/metabolismo , Mutação , Idade de Início , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Criança , Feminino , Teste de Complementação Genética , Células HeLa , Homozigoto , Humanos , Proteínas Ferro-Enxofre/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética
8.
Hum Mutat ; 40(5): 601-618, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30801875

RESUMO

Mitochondria are highly dynamic organelles, undergoing continuous fission and fusion. The DNM1L (dynamin-1 like) gene encodes for the DRP1 protein, an evolutionary conserved member of the dynamin family, responsible for fission of mitochondria, and having a role in the division of peroxisomes, as well. DRP1 impairment is implicated in several neurological disorders and associated with either de novo dominant or compound heterozygous mutations. In five patients presenting with severe epileptic encephalopathy, we identified five de novo dominant DNM1L variants, the pathogenicity of which was validated in a yeast model. Fluorescence microscopy revealed abnormally elongated mitochondria and aberrant peroxisomes in mutant fibroblasts, indicating impaired fission of these organelles. Moreover, a very peculiar finding in our cohort of patients was the presence, in muscle biopsy, of core like areas with oxidative enzyme alterations, suggesting an abnormal distribution of mitochondria in the muscle tissue.


Assuntos
Dinaminas/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Encefalomiopatias Mitocondriais/diagnóstico , Encefalomiopatias Mitocondriais/genética , Músculos/metabolismo , Músculos/patologia , Biomarcadores , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Análise Mutacional de DNA , Dinaminas/química , Fibroblastos/metabolismo , Estudos de Associação Genética/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Modelos Biológicos , Músculos/ultraestrutura , Mutação , Conformação Proteica , Relação Estrutura-Atividade
9.
Am J Hum Genet ; 99(4): 974-983, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27666369

RESUMO

Tubulinopathies constitute a family of neurodevelopmental/neurodegenerative disorders caused by mutations in several genes encoding tubulin isoforms. Loss-of-function mutations in TBCE, encoding one of the five tubulin-specific chaperones involved in tubulin folding and polymerization, cause two rare neurodevelopmental syndromes, hypoparathyroidism-retardation-dysmorphism and Kenny-Caffey syndrome. Although a missense mutation in Tbce has been associated with progressive distal motor neuronopathy in the pmn/pmn mice, no similar degenerative phenotype has been recognized in humans. We report on the identification of an early-onset and progressive neurodegenerative encephalopathy with distal spinal muscular atrophy resembling the phenotype of pmn/pmn mice and caused by biallelic TBCE mutations, with the c.464T>A (p.Ile155Asn) change occurring at the heterozygous/homozygous state in six affected subjects from four unrelated families originated from the same geographical area in Southern Italy. Western blot analysis of patient fibroblasts documented a reduced amount of TBCE, suggestive of rapid degradation of the mutant protein, similarly to what was observed in pmn/pmn fibroblasts. The impact of TBCE mutations on microtubule polymerization was determined using biochemical fractionation and analyzing the nucleation and growth of microtubules at the centrosome and extracentrosomal sites after treatment with nocodazole. Primary fibroblasts obtained from affected subjects displayed a reduced level of polymerized α-tubulin, similarly to tail fibroblasts of pmn/pmn mice. Moreover, markedly delayed microtubule re-polymerization and abnormal mitotic spindles with disorganized microtubule arrangement were also documented. Although loss of function of TBCE has been documented to impact multiple developmental processes, the present findings provide evidence that hypomorphic TBCE mutations primarily drive neurodegeneration.


Assuntos
Encefalopatias/complicações , Encefalopatias/genética , Chaperonas Moleculares/genética , Atrofia Muscular Espinal/complicações , Atrofia Muscular Espinal/genética , Mutação/genética , Adolescente , Idade de Início , Animais , Criança , Feminino , Fibroblastos , Heterozigoto , Homozigoto , Humanos , Lactente , Recém-Nascido , Itália , Masculino , Camundongos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Microtúbulos/patologia , Chaperonas Moleculares/metabolismo , Nocodazol/farmacologia , Fuso Acromático/metabolismo , Fuso Acromático/patologia , Tubulina (Proteína)/metabolismo , Adulto Jovem
10.
Biochim Biophys Acta Mol Basis Dis ; 1863(4): 961-967, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28132884

RESUMO

The mitochondrial Elongation Factor Tu (EF-Tu), encoded by the TUFM gene, is a highly conserved GTPase, which is part of the mitochondrial protein translation machinery. In its activated form it delivers the aminoacyl-tRNAs to the A site of the mitochondrial ribosome. We report here on a baby girl with severe infantile macrocystic leukodystrophy with micropolygyria and a combined defect of complexes I and IV in muscle biopsy, caused by a novel mutation identified in TUFM. Using human mutant cells and the yeast model, we demonstrate the pathological role of the novel variant. Moreover, results of a molecular modeling study suggest that the mutant is inactive in mitochondrial polypeptide chain elongation, probably as a consequence of its reduced ability to bind mitochondrial aa-tRNAs. Four patients have so far been described with mutations in TUFM, and, following the first description of the disease in a single patient, we describe similar clinical and neuroradiological features in an additional patient.


Assuntos
Sequência de Bases , DNA Mitocondrial/genética , Leucoencefalopatias/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Elongação Traducional da Cadeia Peptídica , Fator Tu de Elongação de Peptídeos/genética , Deleção de Sequência , DNA Mitocondrial/metabolismo , Feminino , Humanos , Leucoencefalopatias/metabolismo , Masculino , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Fator Tu de Elongação de Peptídeos/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
11.
Brain ; 139(Pt 3): 782-94, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26912632

RESUMO

This study focused on the molecular characterization of patients with leukoencephalopathy associated with a specific biochemical defect of mitochondrial respiratory chain complex III, and explores the impact of a distinct magnetic resonance imaging pattern of leukoencephalopathy to detect biallelic mutations in LYRM7 in patients with biochemically unclassified leukoencephalopathy. 'Targeted resequencing' of a custom panel including genes coding for mitochondrial proteins was performed in patients with complex III deficiency without a molecular genetic diagnosis. Based on brain magnetic resonance imaging findings in these patients, we selected additional patients from a database of unclassified leukoencephalopathies who were scanned for mutations in LYRM7 by Sanger sequencing. Targeted sequencing revealed homozygous mutations in LYRM7, encoding mitochondrial LYR motif-containing protein 7, in four patients from three unrelated families who had a leukoencephalopathy and complex III deficiency. Two subjects harboured previously unreported variants predicted to be damaging, while two siblings carried an already reported pathogenic homozygous missense change. Sanger sequencing performed in the second cohort of patients revealed LYRM7 mutations in three additional patients, who were selected on the basis of the magnetic resonance imaging pattern. All patients had a consistent magnetic resonance imaging pattern of progressive signal abnormalities with multifocal small cavitations in the periventricular and deep cerebral white matter. Early motor development was delayed in half of the patients. All patients but one presented with subacute neurological deterioration in infancy or childhood, preceded by a febrile infection, and most patients had repeated episodes of subacute encephalopathy with motor regression, irritability and stupor or coma resulting in major handicap or death. LYRM7 protein was strongly reduced in available samples from patients; decreased complex III holocomplex was observed in fibroblasts from a patient carrying a splice site variant; functional studies in yeast confirmed the pathogenicity of two novel mutations. Mutations in LYRM7 were previously found in a single patient with a severe form of infantile onset encephalopathy. We provide new molecular, clinical, and neuroimaging data allowing us to characterize more accurately the molecular spectrum of LYRM7 mutations highlighting that a distinct and recognizable magnetic resonance imaging pattern is related to mutations in this gene. Inter- and intrafamilial variability exists and we observed one patient who was asymptomatic by the age of 6 years.


Assuntos
Leucoencefalopatia Multifocal Progressiva/diagnóstico , Leucoencefalopatia Multifocal Progressiva/genética , Imageamento por Ressonância Magnética , Proteínas Mitocondriais/genética , Chaperonas Moleculares/genética , Mutação/genética , Adolescente , Sequência de Aminoácidos , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética/métodos , Masculino , Dados de Sequência Molecular , Saccharomyces cerevisiae
13.
Hum Mol Genet ; 21(17): 3753-64, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22589247

RESUMO

Leber's hereditary optic neuropathy (LHON) is associated with mitochondrial DNA (mtDNA) ND mutations that are mostly homoplasmic. However, these mutations are not sufficient to explain the peculiar features of penetrance and the tissue-specific expression of the disease and are believed to be causative in association with unknown environmental or other genetic factors. Discerning between clear-cut pathogenetic variants, such as those that appear to be heteroplasmic, and less penetrant variants, such as the homoplasmic, remains a challenging issue that we have addressed here using next-generation sequencing approach. We set up a protocol to quantify MTND5 heteroplasmy levels in a family in which the proband manifests a LHON phenotype. Furthermore, to study this mtDNA haplotype, we applied the cybridization protocol. The results demonstrate that the mutations are mostly homoplasmic, whereas the suspected heteroplasmic feature of the observed mutations is due to the co-amplification of Nuclear mitochondrial Sequences.


Assuntos
Núcleo Celular/genética , DNA Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mitocôndrias/genética , Mutação/genética , Atrofia Óptica Hereditária de Leber/genética , Trifosfato de Adenosina/biossíntese , Adolescente , Adulto , Complexo I de Transporte de Elétrons/genética , Metabolismo Energético , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Mitocondriais/genética , Linhagem , Temperatura , Adulto Jovem
14.
Brain ; 136(Pt 3): 872-81, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23423674

RESUMO

MEDNIK syndrome-acronym for mental retardation, enteropathy, deafness, neuropathy, ichthyosis, keratodermia-is caused by AP1S1 gene mutations, encoding σ1A, the small subunit of the adaptor protein 1 complex, which plays a crucial role in clathrin coat assembly and mediates trafficking between trans-Golgi network, endosomes and the plasma membrane. MEDNIK syndrome was first reported in a few French-Canadian families sharing common ancestors, presenting a complex neurocutaneous phenotype, but its pathogenesis is not completely understood. A Sephardic-Jewish patient, carrying a new AP1S1 homozygous mutation, showed severe perturbations of copper metabolism with hypocupremia, hypoceruloplasminemia and liver copper accumulation, along with intrahepatic cholestasis. Zinc acetate treatment strikingly improved clinical conditions, as well as liver copper and bile-acid overload. We evaluated copper-related metabolites and liver function retrospectively in the original French-Canadian patient series. Intracellular copper metabolism and subcellular localization and function of copper pump ATP7A were investigated in patient fibroblasts. Copper metabolism perturbation and hepatopathy were confirmed in all patients. Studies in mutant fibroblasts showed abnormal copper incorporation and retention, reduced expression of copper-dependent enzymes cytochrome-c-oxidase and Cu/Zn superoxide dismutase, and aberrant intracellular trafficking of Menkes protein ATP7A, which normalized after rescue experiments expressing wild-type AP1S1 gene. We solved the pathogenetic mechanism of MEDNIK syndrome, demonstrating that AP1S1 regulates intracellular copper machinery mediated by copper-pump proteins. This multisystem disease is characterized by a unique picture, combining clinical and biochemical signs of both Menkes and Wilson's diseases, in which liver copper overload is treatable by zinc acetate therapy, and can now be listed as a copper metabolism defect in humans. Our results may also contribute to understand the mechanism(s) of intracellular trafficking of copper pumps.


Assuntos
Complexo 1 de Proteínas Adaptadoras/genética , Subunidades sigma do Complexo de Proteínas Adaptadoras/genética , Cobre/metabolismo , Erros Inatos do Metabolismo dos Metais/tratamento farmacológico , Erros Inatos do Metabolismo dos Metais/genética , Erros Inatos do Metabolismo dos Metais/fisiopatologia , Acetato de Zinco/uso terapêutico , Sequência de Bases , Western Blotting , Análise Mutacional de DNA , Feminino , Fibroblastos/metabolismo , Humanos , Microscopia Confocal , Dados de Sequência Molecular , Linhagem , Reação em Cadeia da Polimerase em Tempo Real , Transfecção
15.
J Med Genet ; 50(2): 104-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23243084

RESUMO

BACKGROUND: Brown-Vialetto-Van Laere (BVVL) syndrome is a rare disorder characterised by progressive pontobulbar palsy and sensorineural deafness. Causative mutations in genes encoding human riboflavin transporter 2 (hRFT2) and 3 (hRFT3) have been identified in BVVL patients. METHODS AND RESULTS: We report the clinical and molecular features of a severe BVVL patient in whom screening of SLC52A3/hRFT2 was negative. Sequence analysis identified two novel compound heterozygous mutations in SLC52A2/hRFT3, namely c.155C>T and c.1255G>A, leading to the amino acid changes p.S52F and p.G419S, respectively. Functional studies show that these defects impair the gene expression of the corresponding transporter, resulting in a significant reduction of riboflavin transport. CONCLUSIONS: These findings support the pathogenetic role of SLC52A2/hRFT3 in BVVL with important clinical and therapeutic implications.


Assuntos
Paralisia Bulbar Progressiva/genética , Perda Auditiva Neurossensorial/genética , Proteínas de Membrana Transportadoras/genética , Receptores Acoplados a Proteínas G/genética , Sequência de Aminoácidos , Pré-Escolar , Análise Mutacional de DNA , Evolução Fatal , Humanos , Masculino , Dados de Sequência Molecular , Alinhamento de Sequência
16.
Ann Clin Transl Neurol ; 11(3): 819-825, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38327089

RESUMO

INTRODUCTION: COXPD23 is a rare mitochondrial disease caused by biallelic pathogenic variants in GTPBP3. We report on two siblings with a mild phenotype. CASE REPORTS: The young boy presented with global developmental delay, ataxic gait and upper limbs tremor, and the older sister with absence seizures and hypertrophic cardiomyopathy. Respiratory chain impairment was confirmed in muscle. DISCUSSION: Reviewed cases point toward clustering around two prevalent phenotypes: an early-onset presentation with severe fatal encephalopathy and a late milder presentation with global developmental delay/ID and cardiopathy, with the latter as, is the main feature. Our patients showed an intermediate phenotype with intrafamilial variability.


Assuntos
Doenças Mitocondriais , Convulsões , Masculino , Humanos , Mitocôndrias , Fenótipo , Proteínas de Ligação ao GTP
17.
Neurogenetics ; 14(2): 153-60, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23532514

RESUMO

Complex III of the mitochondrial respiratory chain (CIII) catalyzes transfer of electrons from reduced coenzyme Q to cytochrome c. Low biochemical activity of CIII is not a frequent etiology in disorders of oxidative metabolism and is genetically heterogeneous. Recently, mutations in the human tetratricopeptide 19 gene (TTC19) have been involved in the etiology of CIII deficiency through impaired assembly of the holocomplex. We investigated a consanguineous Portuguese family where four siblings had reduced enzymatic activity of CIII in muscle and harbored a novel homozygous mutation in TTC19. The clinical phenotype in the four sibs was consistent with severe olivo-ponto-cerebellar atrophy, although their age at onset differed slightly. Interestingly, three patients also presented progressive psychosis. The mutation resulted in almost complete absence of TTC19 protein, defective assembly of CIII in muscle, and enhanced production of reactive oxygen species in cultured skin fibroblasts. Our findings add to the array of mutations in TTC19, corroborate the notion of genotype/phenotype variability in mitochondrial encephalomyopathies even within a single family, and indicate that psychiatric manifestations are a further presentation of low CIII.


Assuntos
Predisposição Genética para Doença/genética , Proteínas de Membrana/genética , Mitocôndrias/genética , Encefalomiopatias Mitocondriais/genética , Proteínas Mitocondriais/genética , Mutação/genética , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Heterogeneidade Genética , Testes Genéticos/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Mitocondriais/metabolismo , Linhagem , Fenótipo
18.
J Inherit Metab Dis ; 36(1): 43-53, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22569581

RESUMO

Recessive mutations in the mitochondrial arginyl-transfer RNA synthetase (RARS2) gene have been associated with early onset encephalopathy with signs of oxidative phosphorylation defects classified as pontocerebellar hypoplasia 6. We describe clinical, neuroimaging and molecular features on five patients from three unrelated families who displayed mutations in RARS2. All patients rapidly developed a neonatal or early-infantile epileptic encephalopathy with intractable seizures. The long-term follow-up revealed a virtual absence of psychomotor development, progressive microcephaly, and feeding difficulties. Mitochondrial respiratory chain enzymes in muscle and fibroblasts were normal in two. Blood and CSF lactate was abnormally elevated in all five patients at early stages while appearing only occasionally abnormal with the progression of the disease. Cerebellar vermis hypoplasia with normal aspect of the cerebral and cerebellar hemispheres appeared within the first months of life at brain MRI. In three patients follow-up neuroimaging revealed a progressive pontocerebellar and cerebral cortical atrophy. Molecular investigations of RARS2 disclosed the c.25A>G/p.I9V and the c.1586+3A>T in family A, the c.734G>A/p.R245Q and the c.1406G>A/p.R469H in family B, and the c.721T>A/p.W241R and c.35A>G/p.Q12R in family C. Functional complementation studies in Saccharomyces cerevisiae showed that mutation MSR1-R531H (equivalent to human p.R469H) abolished respiration whereas the MSR1-R306Q strain (corresponding to p.R245Q) displayed a reduced growth on non-fermentable YPG medium. Although mutations functionally disrupted yeast we found a relatively well preserved arginine aminoacylation of mitochondrial tRNA. Clinical and neuroimaging findings are important clues to raise suspicion and to reach diagnostic accuracy for RARS2 mutations considering that biochemical abnormalities may be absent in muscle biopsy.


Assuntos
Arginina-tRNA Ligase/genética , Mutação , Atrofias Olivopontocerebelares/enzimologia , Atrofias Olivopontocerebelares/genética , Cerebelo/enzimologia , Cerebelo/patologia , Cerebelo/fisiologia , Pré-Escolar , Feminino , Seguimentos , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/sangue , Deficiência Intelectual/líquido cefalorraquidiano , Deficiência Intelectual/genética , Ácido Láctico/sangue , Ácido Láctico/líquido cefalorraquidiano , Síndrome de Lennox-Gastaut , Imageamento por Ressonância Magnética/métodos , Masculino , Microcefalia/sangue , Microcefalia/líquido cefalorraquidiano , Microcefalia/genética , Mitocôndrias/genética , Neuroimagem/métodos , Atrofias Olivopontocerebelares/diagnóstico , Atrofias Olivopontocerebelares/metabolismo , Transtornos Psicomotores/genética , Convulsões/sangue , Convulsões/líquido cefalorraquidiano , Convulsões/genética , Espasmos Infantis/sangue , Espasmos Infantis/líquido cefalorraquidiano , Espasmos Infantis/genética
19.
Front Oncol ; 13: 1324013, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260858

RESUMO

The increased availability of genetic technologies has significantly improved the detection of novel germline variants conferring a predisposition to tumor development in patients with malignant disease. The identification of variants of uncertain significance (VUS) represents a challenge for the clinician, leading to difficulties in decision-making regarding medical management, the surveillance program, and genetic counseling. Moreover, it can generate confusion and anxiety for patients and their family members. Herein, we report a 5-year-old girl carrying a VUS in the Succinate Dehydrogenase Complex Subunit C (SHDC) gene who had been previously treated for high-risk neuroblastoma and subsequently followed by the development of secondary acute myeloid leukemia. In this context, we describe how functional studies can provide additional insight on gene function determining whether the variant interferes with normal protein function or stability.

20.
Neurogenetics ; 13(4): 375-86, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22986587

RESUMO

Mammalian complex V (F1F0-ATP synthase or ATPase) uses the proton gradient to generate ATP during oxidative phosphorylation and requires several helper proteins, including TMEM70, to form the holoenzyme in a stepwise process in which nuclear DNA is combined with mitochondrial DNA-encoded subunits. We report the clinical and molecular findings in three patients presenting lactic acidosis, 3-methylglutaconic aciduria, and hypertrophic cardiomyopathy. All three showed an isolated defect of fully assembled ATP synthase in association with a "common" (c.317-2A > G) and a new (c.628A > C/p.T210P) variant in TMEM70. Interestingly, one of the patients also showed nitric oxide-responsive pulmonary arterial hypertension, a finding never before associated with TMEM70 deficiency. In addition to widening the clinical and mutational spectrum of defective ATP synthase, our study also suggests that mutant TMEM70 associates in high molecular weight complexes (470-550 kDa) when expressed in Hela cells and exerts a direct action in ATP synthase biogenesis and assembly, mediating the incorporation of F1 moieties.


Assuntos
Adenosina Trifosfatases/biossíntese , Proteínas de Transporte/biossíntese , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/deficiência , Mutação , Acidose Láctica/genética , Acidose Láctica/metabolismo , Sequência de Bases , Cardiomiopatia Dilatada/genética , Cardiomiopatia Hipertrófica/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Ataxia Cerebelar/genética , Criança , Pré-Escolar , Hipertensão Pulmonar Primária Familiar , Feminino , Fibroblastos/metabolismo , Células HeLa , Humanos , Hipertensão Pulmonar/genética , Lactente , Erros Inatos do Metabolismo/genética , Dados de Sequência Molecular , Análise de Sequência de DNA , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA