Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Recognit ; 27(9): 549-58, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25042709

RESUMO

Intrabodies, when expressed in cells after genetic fusion to fluorescent proteins, are powerful tools to study endogenous protein dynamics inside cells. However, it remains challenging to determine the conditions for specific imaging and precise labelling of the target antigen with such intracellularly expressed antibody fragments. Here, we show that single-chain Fv (scFv) antibody fragments can be generated that specifically recognize proliferating cell nuclear antigen (PCNA) when expressed in living cancer cells. After selection by phage display, the anti-PCNA scFvs were screened in vitro after being tagged with dimeric glutathione-S-transferase. Anti-PCNA scFvs of increased avidity were further engineered by mutagenesis with sodium bisulfite and error-prone PCR, such that they were almost equivalent to conventional antibodies in in vitro assays. These intrabodies were then rendered bifunctional by fusion to a C-terminal fragment of p21 protein and could thereby readily detect PCNA bound to chromatin in cells. Finally, by linking these optimized peptide-conjugated scFvs to an enhanced green fluorescent protein, fluorescent intrabody-based reagents were obtained that allowed the fate of PCNA in living cells to be examined. The approach described may be applicable to other scFvs that can be solubly expressed in cells, and it provides a unique means to recognize endogenous proteins in living cells with high accuracy.


Assuntos
Diagnóstico por Imagem , Neoplasias/diagnóstico , Antígeno Nuclear de Célula em Proliferação/metabolismo , Sequência de Aminoácidos , Afinidade de Anticorpos , Linhagem Celular Tumoral , Sobrevivência Celular , Fluorescência , Humanos , Indicadores e Reagentes , Dados de Sequência Molecular , Biblioteca de Peptídeos , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/imunologia , Frações Subcelulares/metabolismo
2.
Cell Death Dis ; 15(6): 419, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879621

RESUMO

TRPV6 calcium channel is a prospective target in prostate cancer (PCa) since it is not expressed in healthy prostate while its expression increases during cancer progression. Despite the role of TRPV6 in PCa cell survival and apoptotic resistance has been already established, no reliable tool to target TRPV6 channel in vivo and thus to reduce tumor burden is known to date. Here we report the generation of mouse monoclonal antibody mAb82 raised against extracellular epitope of the pore region of the channel. mAb82 inhibited TRPV6 currents by 90% at 24 µg/ml in a dose-dependent manner while decreasing store-operated calcium entry to 56% at only 2.4 µg/ml. mAb82 decreased PCa survival rate in vitro by 71% at 12 µg/ml via inducing cell death through the apoptosis cascade via activation of the protease calpain, following bax activation, mitochondria enlargement, and loss of cristae, Cyt C release, pro-caspase 9 cleavage with the subsequent activation of caspases 3/7. In vivo, mice bearing either PC3Mtrpv6+/+ or PC3Mtrpv6-/-+pTRPV6 tumors were successfully treated with mAb82 at the dose as low as 100 µg/kg resulting in a significant reduction tumor growth by 31% and 90%, respectively. The survival rate was markedly improved by 3.5 times in mice treated with mAb82 in PC3Mtrpv6+/+ tumor group and completely restored in PC3Mtrpv6-/-+pTRPV6 tumor group. mAb82 showed a TRPV6-expression dependent organ distribution and virtually no toxicity in the same way as mAbAU1, a control antibody of the same Ig2a isotype. Overall, our data demonstrate for the first time the use of an anti-TRPV6 monoclonal antibody in vitro and in vivo in the treatment of the TRPV6-expressing PCa tumors.


Assuntos
Anticorpos Monoclonais , Apoptose , Canais de Cálcio , Neoplasias da Próstata , Canais de Cátion TRPV , Masculino , Canais de Cátion TRPV/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Apoptose/efeitos dos fármacos , Humanos , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Camundongos , Canais de Cálcio/metabolismo , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Calpaína/metabolismo , Cálcio/metabolismo
3.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 5): 774-84, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23633586

RESUMO

The caspase recruitment domain (CARD) is present in death-domain superfamily proteins involved in inflammation and apoptosis. BinCARD is named for its ability to interact with Bcl10 and inhibit downstream signalling. Human BinCARD is expressed as two isoforms that encode the same N-terminal CARD region but which differ considerably in their C-termini. Both isoforms are expressed in immune cells, although BinCARD-2 is much more highly expressed. Crystals of the CARD fold common to both had low symmetry (space group P1). Molecular replacement was unsuccessful in this low-symmetry space group and, as the construct contains no methionines, first one and then two residues were engineered to methionine for MAD phasing. The double-methionine variant was produced as a selenomethionine derivative, which was crystallized and the structure was solved using data measured at two wavelengths. The crystal structures of the native and selenomethionine double mutant were refined to high resolution (1.58 and 1.40 Šresolution, respectively), revealing the presence of a cis-peptide bond between Tyr39 and Pro40. Unexpectedly, the native crystal structure revealed that all three cysteines were oxidized. The mitochondrial localization of BinCARD-2 and the susceptibility of its CARD region to redox modification points to the intriguing possibility of a redox-regulatory role.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/química , Proteínas/química , Proteínas/metabolismo , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Cristalografia por Raios X , Cisteína/metabolismo , Células HeLa , Humanos , Mitocôndrias/metabolismo , Modelos Moleculares , Mutação , Oxirredução , Prolina/química , Conformação Proteica , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Proteínas/genética , Selenometionina
4.
Nat Commun ; 14(1): 5291, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37652913

RESUMO

Systemic sclerosis (SSc) is an autoimmune, inflammatory and fibrotic disease with limited treatment options. Developing new therapies is therefore crucial to address patient needs. To this end, we focused on galectin-3 (Gal-3), a lectin known to be associated with several pathological processes seen in SSc. Using RNA sequencing of whole-blood samples in a cross-sectional cohort of 249 patients with SSc, Gal-3 and its interactants defined a strong transcriptomic fingerprint associated with disease severity, pulmonary and cardiac malfunctions, neutrophilia and lymphopenia. We developed new Gal-3 neutralizing monoclonal antibodies (mAb), which were then evaluated in a mouse model of hypochlorous acid (HOCl)-induced SSc. We show that two of these antibodies, D11 and E07, reduced pathological skin thickening, lung and skin collagen deposition, pulmonary macrophage content, and plasma interleukin-5 and -6 levels. Moreover, E07 changed the transcriptional profiles of HOCl-treated mice, resulting in a gene expression pattern that resembled that of control mice. Similarly, pathological pathways engaged in patients with SSc were counteracted by E07 in mice. Collectively, these findings demonstrate the translational potential of Gal-3 blockade as a therapeutic option for SSc.


Assuntos
Galectina 3 , Escleroderma Sistêmico , Animais , Camundongos , Galectina 3/genética , Estudos Transversais , Escleroderma Sistêmico/tratamento farmacológico , Escleroderma Sistêmico/genética , Anticorpos Monoclonais , Modelos Animais de Doenças , Ácido Hipocloroso
5.
J Biol Chem ; 286(28): 25397-405, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21622577

RESUMO

The SPP1 siphophage uses its long non-contractile tail and tail tip to recognize and infect the Gram-positive bacterium Bacillus subtilis. The tail-end cap and its attached tip are the critical components for host recognition and opening of the tail tube for genome exit. In the present work, we determined the cryo-electron microscopic (cryo-EM) structure of a complex formed by the cap protein gp19.1 (Dit) and the N terminus of the downstream protein of gp19.1 in the SPP1 genome, gp21(1-552) (Tal). This complex assembles two back-to-back stacked gp19.1 ring hexamers, interacting loosely, and two gp21(1-552) trimers interacting with gp19.1 at both ends of the stack. Remarkably, one gp21(1-552) trimer displays a "closed" conformation, whereas the second is "open" delineating a central channel. The two conformational states dock nicely into the EM map of the SPP1 cap domain, respectively, before and after DNA release. Moreover, the open/closed conformations of gp19.1-gp21(1-552) are consistent with the structures of the corresponding proteins in the siphophage p2 baseplate, where the Tal protein (ORF16) attached to the ring of Dit (ORF15) was also found to adopt these two conformations. Therefore, the present contribution allowed us to revisit the SPP1 tail distal-end architectural organization. Considering the sequence conservation among Dit and the N-terminal region of Tal-like proteins in Gram-positive-infecting Siphoviridae, it also reveals the Tal opening mechanism as a hallmark of siphophages probably involved in the generation of the firing signal initiating the cascade of events that lead to phage DNA release in vivo.


Assuntos
Bacillus subtilis/virologia , Genoma Viral/fisiologia , Siphoviridae/fisiologia , Proteínas Estruturais Virais/metabolismo , Ligação Viral , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/ultraestrutura , Estrutura Terciária de Proteína , Siphoviridae/ultraestrutura , Proteínas Estruturais Virais/genética
6.
J Biol Chem ; 285(47): 36666-73, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-20843802

RESUMO

Siphophage SPP1 infects the gram-positive bacterium Bacillus subtilis using its long non-contractile tail and tail-tip. Electron microscopy (EM) previously allowed a low resolution assignment of most orf products belonging to these regions. We report here the structure of the SPP1 distal tail protein (Dit, gp19.1). The combination of x-ray crystallography, EM, and light scattering established that Dit is a back-to-back dimer of hexamers. However, Dit fitting in the virion EM maps was only possible with a hexamer located between the tail-tube and the tail-tip. Structure comparison revealed high similarity between Dit and a central component of lactophage baseplates. Sequence similarity search expanded its relatedness to several phage proteins, suggesting that Dit is a docking platform for the tail adsorption apparatus in Siphoviridae infecting gram-positive bacteria and that its architecture is a paradigm for these hub proteins. Dit structural similarity extends also to non-contractile and contractile phage tail proteins (gpV(N) and XkdM) as well as to components of the bacterial type 6 secretion system, supporting an evolutionary connection between all these devices.


Assuntos
Bacillus subtilis/virologia , Bacteriófagos/metabolismo , Siphoviridae/genética , Proteínas da Cauda Viral/química , Bacteriófagos/genética , Cristalografia por Raios X , Conformação Proteica , Proteínas Virais Reguladoras e Acessórias , Proteínas da Cauda Viral/genética , Proteínas da Cauda Viral/metabolismo , Vírion/metabolismo
7.
J Biol Chem ; 284(34): 22549-58, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19549784

RESUMO

Ran-GTP interacts strongly with importin-beta, and this interaction promotes the release of the importin-alpha-nuclear localization signal cargo from importin-beta. Ran-GDP also interacts with importin-beta, but this interaction is 4 orders of magnitude weaker than the Ran-GTP.importin-beta interaction. Here we use the yeast complement of nuclear import proteins to show that the interaction between Ran-GDP and importin-beta promotes the dissociation of GDP from Ran. The release of GDP from the Ran-GDP-importin-beta complex stabilizes the complex, which cannot be dissociated by importin-alpha. Although Ran has a higher affinity for GDP compared with GTP, Ran in complex with importin-beta has a higher affinity for GTP. This feature is responsible for the generation of Ran-GTP from Ran-GDP by importin-beta. Ran-binding protein-1 (RanBP1) activates this reaction by forming a trimeric complex with Ran-GDP and importin-beta. Importin-alpha inhibits the GDP exchange reaction by sequestering importin-beta, whereas RanBP1 restores the GDP nucleotide exchange by importin-beta by forming a tetrameric complex with importin-beta, Ran, and importin-alpha. The exchange is also inhibited by nuclear-transport factor-2 (NTF2). We suggest a mechanism for nuclear import, additional to the established RCC1 (Ran-guanine exchange factor)-dependent pathway that incorporates these results.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , beta Carioferinas/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Transporte Ativo do Núcleo Celular/genética , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Ligação Proteica , alfa Carioferinas/metabolismo
8.
Protein Expr Purif ; 67(2): 88-95, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19460440

RESUMO

Developmentally regulated G-proteins (DRGs) are a highly conserved family of GTP-binding proteins found in archaea, plants, fungi and animals, indicating important roles in fundamental pathways. Their function is poorly understood, but they have been implicated in cell division, proliferation, and growth, as well as several medical conditions. Individual subfamilies within the G-protein superfamily possess unique nucleotide binding and hydrolysis rates that are intrinsic to their cellular function, and so characterization of these rates for a particular G-protein may provide insight into its cellular activity. We have produced recombinant active DRG protein using a bacterial expression system and refolding, and performed biochemical characterization of their GTP binding and hydrolysis. We show that recombinant Arabidopsis thaliana atDRG1 and atDRG2a are able to bind GDP and GTP. We also show that DRGs can hydrolyze GTP in vitro without the assistance of GTPase-activating proteins and guanine exchange factors. The atDRG proteins hydrolyze GTP at a relatively slow rate (0.94x10(-3)min(-1) for DRG1 and 1.36x10(-3)min(-1) for DRG2) that is consistent with their nearest characterized relatives, the Obg subfamily. The ability of DRGs to bind nucleotide substrates without assistance, their slow rate of GTP hydrolysis, heat stress activation and domain conservation suggest a possible role as a chaperone in ribosome assembly in response to stress as it has been suggested for the Obg proteins, a different but related G-protein subfamily.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Proteínas de Ligação ao GTP/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Escherichia coli/genética , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Guanosina Difosfato/análogos & derivados , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólise , Corpos de Inclusão/química , Espectrometria de Massas , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , ortoaminobenzoatos/metabolismo
9.
J Immunother Cancer ; 7(1): 29, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30717773

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) treatment is currently restricted to chemotherapy. Hence, tumor-specific molecular targets and/or alternative therapeutic strategies for TNBC are urgently needed. Immunotherapy is emerging as an exciting treatment option for TNBC patients. The aspartic protease cathepsin D (cath-D), a marker of poor prognosis in breast cancer (BC), is overproduced and hypersecreted by human BC cells. This study explores whether cath-D is a tumor cell-associated extracellular biomarker and a potent target for antibody-based therapy in TNBC. METHODS: Cath-D prognostic value and localization was evaluated by transcriptomics, proteomics and immunohistochemistry in TNBC. First-in-class anti-cath-D human scFv fragments binding to both human and mouse cath-D were generated using phage display and cloned in the human IgG1 λ format (F1 and E2). Anti-cath-D antibody biodistribution, antitumor efficacy and in vivo underlying mechanisms were investigated in TNBC MDA-MB-231 tumor xenografts in nude mice. Antitumor effect was further assessed in TNBC patient-derived xenografts (PDXs). RESULTS: High CTSD mRNA levels correlated with shorter recurrence-free survival in TNBC, and extracellular cath-D was detected in the tumor microenvironment, but not in matched normal breast stroma. Anti-cath-D F1 and E2 antibodies accumulated in TNBC MDA-MB-231 tumor xenografts, inhibited tumor growth and improved mice survival without apparent toxicity. The Fc function of F1, the best antibody candidate, was essential for maximal tumor inhibition in the MDA-MB-231 model. Mechanistically, F1 antitumor response was triggered through natural killer cell activation via IL-15 upregulation, associated with granzyme B and perforin production, and the release of antitumor IFNγ cytokine. The F1 antibody also prevented the tumor recruitment of immunosuppressive tumor-associated macrophages M2 and myeloid-derived suppressor cells, a specific effect associated with a less immunosuppressive tumor microenvironment highlighted by TGFß decrease. Finally, the antibody F1 inhibited tumor growth of two TNBC PDXs, isolated from patients resistant or not to neo-adjuvant chemotherapy. CONCLUSION: Cath-D is a tumor-specific extracellular target in TNBC suitable for antibody-based therapy. Immunomodulatory antibody-based strategy against cath-D is a promising immunotherapy to treat patients with TNBC.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Catepsina D/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Anticorpos Monoclonais/farmacocinética , Antineoplásicos Imunológicos/farmacocinética , Catepsina D/genética , Catepsina D/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Imunoterapia , Camundongos Nus , RNA Mensageiro/metabolismo , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Proteins ; 70(4): 1142-6, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17894344

RESUMO

Circular dichroism (CD) spectroscopy beamlines at synchrotrons produce dramatically higher light flux than conventional CD instruments. This property of synchrotron radiation circular dichroism (SRCD) results in improved signal-to-noise ratios and allows data collection to lower wavelengths, characteristics that have led to the development of novel SRCD applications. Here we describe the use of SRCD to study protein complex formation, specifically evaluating the complex formed between carboxypeptidase A and its protein inhibitor latexin. Crystal structure analyses of this complex and the individual proteins reveal only minor changes in secondary structure of either protein upon complex formation (i.e., it involves only rigid body interactions). Conventional CD spectroscopy reports on changes in secondary structure and would therefore not be expected to be sensitive to such interactions. However, in this study we have shown that SRCD can identify differences in the vacuum ultraviolet CD spectra that are significant and attributable to complex formation.


Assuntos
Carboxipeptidases A/química , Dicroísmo Circular/instrumentação , Inibidores Enzimáticos/química , Complexos Multiproteicos/metabolismo , Antígenos/química , Carboxipeptidases A/antagonistas & inibidores , Dicroísmo Circular/métodos , Ligação Proteica , Conformação Proteica , Síncrotrons
11.
Protein Expr Purif ; 59(2): 266-73, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18387819

RESUMO

Wolbachia pipientis are obligate endosymbionts that infect a wide range of insect and other arthropod species. They act as reproductive parasites by manipulating the host reproduction machinery to enhance their own transmission. This unusual phenotype is thought to be a consequence of the actions of secreted Wolbachia proteins that are likely to contain disulfide bonds to stabilize the protein structure. In bacteria, the introduction or isomerization of disulfide bonds in proteins is catalyzed by Dsb proteins. The Wolbachia genome encodes two proteins, alpha-DsbA1 and alpha-DsbA2, that might catalyze these steps. In this work we focussed on the 234 residue protein alpha-DsbA1; the gene was cloned and expressed in Escherichia coli, the protein was purified and its identity confirmed by mass spectrometry. The sequence identity of alpha-DsbA1 for both dithiol oxidants (E. coli DsbA, 12%) and disulfide isomerases (E. coli DsbC, 14%) is similar. We therefore sought to establish whether alpha-DsbA1 is an oxidant or an isomerase based on functional activity. The purified alpha-DsbA1 was active in an oxidoreductase assay but had little isomerase activity, indicating that alpha-DsbA1 is DsbA-like rather than DsbC-like. This work represents the first successful example of the characterization of a recombinant Wolbachia protein. Purified alpha-DsbA1 will now be used in further functional studies to identify protein substrates that could help explain the molecular basis for the unusual Wolbachia phenotypes, and in structural studies to explore its relationship to other disulfide oxidoreductase proteins.


Assuntos
Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Isomerases de Dissulfetos de Proteínas/biossíntese , Isomerases de Dissulfetos de Proteínas/química , Wolbachia/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/isolamento & purificação , Clonagem Molecular , Escherichia coli/genética , Dados de Sequência Molecular , Isomerases de Dissulfetos de Proteínas/isolamento & purificação , Alinhamento de Sequência , Wolbachia/genética
12.
Methods Mol Biol ; 426: 269-75, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18542870

RESUMO

Expression of insoluble protein in E. coli is a major bottleneck of high throughput structural biology projects. Refolding proteins into native conformations from inclusion bodies could significantly increase the number of protein targets that can be taken on to structural studies. This chapter presents a simple assay for screening insoluble protein targets and identifying those that are most amenable to refolding. The assay is based on the observation that when proteins are refolded while bound to metal affinity resin, misfolded proteins are generally not eluted by imidazole. This difference is exploited here to distinguish between folded and misfolded proteins. Two implementations of the assay are described. The assay fits well into a standard high throughput structural biology pipeline, because it begins with the inclusion body preparations that are a byproduct of small-scale, automated expression and purification trials and does not require additional facilities. Two formats of the assay are described, a manual assay that is useful for screening small numbers of targets, and an automated implementation that is useful for large numbers of targets.


Assuntos
Dobramento de Proteína , Renaturação Proteica , Proteínas/química , Escherichia coli/genética , Escherichia coli/metabolismo , Histidina/química , Corpos de Inclusão/química , Proteínas/genética , Proteínas/isolamento & purificação , Solubilidade
13.
Methods Mol Biol ; 426: 27-35, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18542855

RESUMO

Increasing the success in obtaining structures and maximizing the value of the structures determined are the two major goals of target selection in structural proteomics. This chapter presents an efficient and flexible target selection procedure supplemented with a Web-based resource that is suitable for small- to large-scale structural genomics projects that use crystallography as the major means of structure determination. Based on three criteria, biological significance, structural novelty, and "crystallizability," the approach first removes (filters) targets that do not meet minimal criteria and then ranks the remaining targets based on their "crystallizability" estimates. This novel procedure was designed to maximize selection efficiency, and its prevailing criteria categories make it suitable for a broad range of structural proteomics projects.


Assuntos
Proteínas/química , Homologia Estrutural de Proteína , Animais , Cristalização , Cristalografia por Raios X/métodos , Bases de Dados de Proteínas , Humanos
14.
Methods Mol Biol ; 426: 577-87, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18542891

RESUMO

This chapter describes the methodology adopted in a project aimed at structural and functional characterization of proteins that potentially play an important role in mammalian macrophages. The methodology that underpins this project is applicable to both small research groups and larger structural genomics consortia. Gene products with putative roles in macrophage function are identified using gene expression information obtained via DNA microarray technology. Specific targets for structural and functional characterization are then selected based on a set of criteria aimed at maximizing insight into function. The target proteins are cloned using a modification of Gateway cloning technology, expressed with hexa-histidine tags in E. coli, and purified to homogeneity using a combination of affinity and size exclusion chromatography. Purified proteins are finally subjected to crystallization trials and/or NMR-based screening to identify candidates for structure determination. Where crystallography and NMR approaches are unsuccessful, chemical cross-linking is employed to obtain structural information. This resulting structural information is used to guide cell biology experiments to further investigate the cellular and molecular function of the targets in macrophage biology. Jointly, the data sheds light on the molecular and cellular functions of macrophage proteins.


Assuntos
Macrófagos/metabolismo , Proteínas/química , Proteômica/métodos , Proteômica/organização & administração , Animais , Artrite/genética , Artrite/metabolismo , Biologia Computacional , Cristalografia por Raios X , Humanos , Camundongos , Conformação Proteica , Dobramento de Proteína , Proteínas/genética , Proteínas/isolamento & purificação , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Queensland , Universidades
15.
Methods Mol Biol ; 1827: 93-108, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30196493

RESUMO

Libraries of antibody fragments displayed on filamentous phages are now a widely used approach to isolate antibodies against virtually any target. We describe a simple protocol to make large and diverse libraries based on a single or a limited number of frameworks. The approach is flexible enough to be used with any antibody format, either single-chain (scFv, VHH) or multi-chain (Fv, Fab, (Fab')2), and to target in a single step the six complementarity-determining regions-or any other part-of the antibody molecule. Using this protocol, libraries larger than 1010 can be constructed in a single week.


Assuntos
Biblioteca de Peptídeos , Engenharia de Proteínas/métodos , DNA/metabolismo , Eletroporação , Escherichia coli/metabolismo , Mutagênese/genética , Controle de Qualidade
16.
Methods Mol Biol ; 1701: 239-253, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29116508

RESUMO

Libraries of antibody fragments displayed on filamentous phages have proved their value to generate human antibodies against virtually any target. We describe here a simple protocol to make large and diverse libraries based on a single or a limited number of frameworks. The approach is flexible enough to be used with any antibody format, either single-chain (scFv, VHH) or multi-chain (Fv, Fab, (Fab')2), and to target in a single step the six complementarity-determining regions-or any other part-of the antibody molecule. Using this protocol, libraries larger than 1010 can be easily constructed in a single week.


Assuntos
Clonagem Molecular/métodos , Biblioteca Gênica , Biblioteca de Peptídeos , Anticorpos de Cadeia Única/genética , Animais , Humanos , Anticorpos de Cadeia Única/imunologia
17.
Biomol Eng ; 23(6): 281-9, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17097918

RESUMO

The flood of new genomic sequence information together with technological innovations in protein structure determination have led to worldwide structural genomics (SG) initiatives. The goals of SG initiatives are to accelerate the process of protein structure determination, to fill in protein fold space and to provide information about the function of uncharacterized proteins. In the long-term, these outcomes are likely to impact on medical biotechnology and drug discovery, leading to a better understanding of disease as well as the development of new therapeutics. Here we describe the high throughput pipeline established at the University of Queensland in Australia. In this focused pipeline, the targets for structure determination are proteins that are expressed in mouse macrophage cells and that are inferred to have a role in innate immunity. The aim is to characterize the molecular structure and the biochemical and cellular function of these targets by using a parallel processing pipeline. The pipeline is designed to work with tens to hundreds of target gene products and comprises target selection, cloning, expression, purification, crystallization and structure determination. The structures from this pipeline will provide insights into the function of previously uncharacterized macrophage proteins and could lead to the validation of new drug targets for chronic obstructive pulmonary disease and arthritis.


Assuntos
Proteômica , Animais , Artrite/tratamento farmacológico , Artrite/genética , Artrite/metabolismo , Cristalografia por Raios X/métodos , Desenho de Fármacos , Humanos , Macrófagos/metabolismo , Modelos Moleculares , Proteômica/métodos , Proteômica/organização & administração , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Queensland , Universidades
18.
Mol Cancer Ther ; 3(9): 1079-90, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15367702

RESUMO

Human Eg5, a member of the kinesin superfamily, plays a key role in mitosis, as it is required for the formation of a bipolar spindle. We describe here the first in vitro microtubule-activated ATPase-based assay for the identification of small-molecule inhibitors of Eg5. We screened preselected libraries obtained from the National Cancer Institute and identified S-trityl-L-cysteine as the most effective Eg5 inhibitor with an IC50 of 1.0 micromol/L for the inhibition of basal ATPase activity and 140 nmol/L for the microtubule-activated ATPase activity. Subsequent cell-based assays revealed that S-trityl-L-cysteine induced mitotic arrest in HeLa cells (IC50, 700 nmol/L) with characteristic monoastral spindles. S-trityl-L-cysteine is 36 times more potent for inducing mitotic arrest than the well-studied inhibitor, monastrol. Gossypol, flexeril, and two phenothiazine analogues were also identified as Eg5 inhibitors, and we found that they all result in monoastral spindles in HeLa cells. It is notable that all the Eg5 inhibitors identified here have been shown previously to inhibit tumor cell line growth in the NCI 60 tumor cell line screen, and we conclude that their antitumor activity may at least in part be explained by their ability to inhibit Eg5 activity.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Cisteína/análogos & derivados , Cisteína/farmacologia , Cinesinas/antagonistas & inibidores , Mitose/efeitos dos fármacos , Adenosina Trifosfatases/antagonistas & inibidores , Bioensaio , Células HeLa , Humanos , Concentração Inibidora 50 , Fuso Acromático/efeitos dos fármacos
19.
J Mol Biol ; 426(22): 3729-3743, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25174334

RESUMO

Antibody molecules are able to recognize any antigen with high affinity and specificity. To get insight into the molecular diversity at the source of this functional diversity, we compiled and analyzed a non-redundant aligned collection of 227 structures of antibody-antigen complexes. Free energy of binding of all the residue side chains was quantified by computational alanine scanning, allowing the first large-scale quantitative description of antibody paratopes. This demonstrated that as few as 8 residues among 30 key positions are sufficient to explain 80% of the binding free energy in most complexes. At these positions, the residue distribution is not only different from that of other surface residues but also dependent on the role played by the side chain in the interaction, residues participating in the binding energy being mainly aromatic residues, and Gly or Ser otherwise. To question the generality of these binding characteristics, we isolated an antibody fragment by phage display using a biased synthetic repertoire with only two diversified complementarity-determining regions and solved its structure in complex with its antigen. Despite this restricted diversity, the structure demonstrated that all complementarity-determining regions were involved in the interaction with the antigen and that the rules derived from the natural antibody repertoire apply to this synthetic binder, thus demonstrating the robustness and universality of our results.


Assuntos
Alanina/química , Anticorpos/química , Anticorpos/metabolismo , Complexo Antígeno-Anticorpo/química , Complexo Antígeno-Anticorpo/metabolismo , Regiões Determinantes de Complementaridade/química , Alanina/genética , Alanina/metabolismo , Anticorpos/genética , Complexo Antígeno-Anticorpo/genética , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/metabolismo , Cristalografia por Raios X , Epitopos/química , Epitopos/genética , Epitopos/metabolismo , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Mutagênese , Mutação/genética , Biblioteca de Peptídeos , Ligação Proteica , Conformação Proteica
20.
Methods Mol Biol ; 907: 109-22, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22907348

RESUMO

Libraries of antibody fragments displayed on filamentous phages have proved their value to generate human antibodies against virtually any target. We describe here a simple protocol to make large and diverse libraries based on a single or few frameworks. Diversity is introduced in the third hypervariable loops using degenerate synthetic oligonucleotides and PCR assembly. Because all the antibody fragments isolated from the library will share their framework sequence, their stability and physical properties will be more consistent and customizable than when antibody fragments are isolated from a library prepared from human donors.


Assuntos
Biologia Molecular/métodos , Biblioteca de Peptídeos , Anticorpos de Cadeia Única/genética , Bacteriófagos/metabolismo , Clonagem Molecular , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Eletroporação , Vetores Genéticos/genética , Humanos , Oligonucleotídeos , Estrutura Secundária de Proteína , Anticorpos de Cadeia Única/química , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA