Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
Biophys J ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39066477

RESUMO

Proton transport across lipid membranes is one of the most fundamental reactions that make up living organisms. In vitro, however, the study of proton transport reactions can be very challenging due to limitations imposed by proton concentrations, compartment size, and unstirred layers as well as buffer exchange and buffer capacity. In this study, we have developed a proton permeation assay based on the microfluidic trapping of giant vesicles enclosing the pH-sensitive dye pyranine to address some of these challenges. Time-resolved fluorescence imaging upon a rapid pH shift enabled us to investigate the facilitated H+ permeation mediated by either a channel or a carrier. Specifically, we compared the proton transport rates as a function of different proton gradients of the channel gramicidin D and the proton carrier carbonyl cyanide-m-chlorophenyl hydrazone. Our results demonstrate the efficacy of the assay in monitoring proton transport reactions and distinguishing between a channel-like and a carrier-like mechanism. This groundbreaking result enabled us to elucidate the enigmatic mode of the proton permeation mechanism of the recently discovered natural fibupeptide lugdunin.

2.
PLoS One ; 19(8): e0308444, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39167597

RESUMO

Earthquake-triggered landslides show three important characteristics: they are often responsible for a considerable proportion of the damage sustained during mountain region earthquakes, they are non-randomly distributed across space, and they continue to evolve in the years after the earthquake. Despite this, planning for future earthquakes rarely takes into consideration either landslides or their evolution with time. Here we couple a unique timeseries of mapped landslides between 2014-2020 across the area of Nepal impacted by the 2015 Mw 7.8 Gorkha earthquake and a numerical landslide runout model overlain with building locations to examine how the distributions of both evolving landslide hazard and exposure intersect to generate a dynamic threat to buildings. The threat from landslide runout is shown to change in predictable ways after the earthquake, becoming more pronounced at mid- and lower-hillslope positions and remaining in the landscape for multiple years. Using the positions of our mapped landslides as a starting point, we can identify a priori the locations of 78% of buildings that were subsequently impacted by landslide debris. We show that landslide exposure and hazard vary from negligible to high, in relative terms, over lateral distances of as little as 10s of m. Our findings hold important implications for guiding reconstruction and for taking steps to reduce the risks from future earthquakes.


Assuntos
Terremotos , Deslizamentos de Terra , Nepal , Humanos , Modelos Teóricos
3.
London; Churchill; 2 ed; 1900. 136 p. 19cms.
Monografia em Inglês | LILACS, HANSEN, Hanseníase, SESSP-ILSLACERVO, SES-SP | ID: biblio-1086612
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA