Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(1): 184-203.e28, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181741

RESUMO

We performed comprehensive proteogenomic characterization of small cell lung cancer (SCLC) using paired tumors and adjacent lung tissues from 112 treatment-naive patients who underwent surgical resection. Integrated multi-omics analysis illustrated cancer biology downstream of genetic aberrations and highlighted oncogenic roles of FAT1 mutation, RB1 deletion, and chromosome 5q loss. Two prognostic biomarkers, HMGB3 and CASP10, were identified. Overexpression of HMGB3 promoted SCLC cell migration via transcriptional regulation of cell junction-related genes. Immune landscape characterization revealed an association between ZFHX3 mutation and high immune infiltration and underscored a potential immunosuppressive role of elevated DNA damage response activity via inhibition of the cGAS-STING pathway. Multi-omics clustering identified four subtypes with subtype-specific therapeutic vulnerabilities. Cell line and patient-derived xenograft-based drug tests validated the specific therapeutic responses predicted by multi-omics subtyping. This study provides a valuable resource as well as insights to better understand SCLC biology and improve clinical practice.


Assuntos
Neoplasias Pulmonares , Proteogenômica , Carcinoma de Pequenas Células do Pulmão , Humanos , Linhagem Celular , Neoplasias Pulmonares/química , Neoplasias Pulmonares/genética , Carcinoma de Pequenas Células do Pulmão/química , Carcinoma de Pequenas Células do Pulmão/genética , Xenoenxertos , Biomarcadores Tumorais/análise
2.
Cell ; 187(5): 1255-1277.e27, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38359819

RESUMO

Despite the successes of immunotherapy in cancer treatment over recent decades, less than <10%-20% cancer cases have demonstrated durable responses from immune checkpoint blockade. To enhance the efficacy of immunotherapies, combination therapies suppressing multiple immune evasion mechanisms are increasingly contemplated. To better understand immune cell surveillance and diverse immune evasion responses in tumor tissues, we comprehensively characterized the immune landscape of more than 1,000 tumors across ten different cancers using CPTAC pan-cancer proteogenomic data. We identified seven distinct immune subtypes based on integrative learning of cell type compositions and pathway activities. We then thoroughly categorized unique genomic, epigenetic, transcriptomic, and proteomic changes associated with each subtype. Further leveraging the deep phosphoproteomic data, we studied kinase activities in different immune subtypes, which revealed potential subtype-specific therapeutic targets. Insights from this work will facilitate the development of future immunotherapy strategies and enhance precision targeting with existing agents.


Assuntos
Neoplasias , Proteogenômica , Humanos , Terapia Combinada , Genômica , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Proteômica , Evasão Tumoral
3.
Cell ; 186(18): 3945-3967.e26, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37582358

RESUMO

Post-translational modifications (PTMs) play key roles in regulating cell signaling and physiology in both normal and cancer cells. Advances in mass spectrometry enable high-throughput, accurate, and sensitive measurement of PTM levels to better understand their role, prevalence, and crosstalk. Here, we analyze the largest collection of proteogenomics data from 1,110 patients with PTM profiles across 11 cancer types (10 from the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium [CPTAC]). Our study reveals pan-cancer patterns of changes in protein acetylation and phosphorylation involved in hallmark cancer processes. These patterns revealed subsets of tumors, from different cancer types, including those with dysregulated DNA repair driven by phosphorylation, altered metabolic regulation associated with immune response driven by acetylation, affected kinase specificity by crosstalk between acetylation and phosphorylation, and modified histone regulation. Overall, this resource highlights the rich biology governed by PTMs and exposes potential new therapeutic avenues.


Assuntos
Neoplasias , Processamento de Proteína Pós-Traducional , Proteômica , Humanos , Acetilação , Histonas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fosforilação , Proteômica/métodos
4.
Cell ; 186(18): 3921-3944.e25, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37582357

RESUMO

Cancer driver events refer to key genetic aberrations that drive oncogenesis; however, their exact molecular mechanisms remain insufficiently understood. Here, our multi-omics pan-cancer analysis uncovers insights into the impacts of cancer drivers by identifying their significant cis-effects and distal trans-effects quantified at the RNA, protein, and phosphoprotein levels. Salient observations include the association of point mutations and copy-number alterations with the rewiring of protein interaction networks, and notably, most cancer genes converge toward similar molecular states denoted by sequence-based kinase activity profiles. A correlation between predicted neoantigen burden and measured T cell infiltration suggests potential vulnerabilities for immunotherapies. Patterns of cancer hallmarks vary by polygenic protein abundance ranging from uniform to heterogeneous. Overall, our work demonstrates the value of comprehensive proteogenomics in understanding the functional states of oncogenic drivers and their links to cancer development, surpassing the limitations of studying individual cancer types.


Assuntos
Neoplasias , Proteogenômica , Humanos , Neoplasias/genética , Oncogenes , Transformação Celular Neoplásica/genética , Variações do Número de Cópias de DNA
5.
Cell ; 184(19): 5031-5052.e26, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34534465

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor patient survival. Toward understanding the underlying molecular alterations that drive PDAC oncogenesis, we conducted comprehensive proteogenomic analysis of 140 pancreatic cancers, 67 normal adjacent tissues, and 9 normal pancreatic ductal tissues. Proteomic, phosphoproteomic, and glycoproteomic analyses were used to characterize proteins and their modifications. In addition, whole-genome sequencing, whole-exome sequencing, methylation, RNA sequencing (RNA-seq), and microRNA sequencing (miRNA-seq) were performed on the same tissues to facilitate an integrated proteogenomic analysis and determine the impact of genomic alterations on protein expression, signaling pathways, and post-translational modifications. To ensure robust downstream analyses, tumor neoplastic cellularity was assessed via multiple orthogonal strategies using molecular features and verified via pathological estimation of tumor cellularity based on histological review. This integrated proteogenomic characterization of PDAC will serve as a valuable resource for the community, paving the way for early detection and identification of novel therapeutic targets.


Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Proteogenômica , Adenocarcinoma/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Carcinoma Ductal Pancreático/diagnóstico , Estudos de Coortes , Células Endoteliais/metabolismo , Epigênese Genética , Feminino , Dosagem de Genes , Genoma Humano , Glicólise , Glicoproteínas/biossíntese , Humanos , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Neoplasias Pancreáticas/diagnóstico , Fenótipo , Fosfoproteínas/metabolismo , Fosforilação , Prognóstico , Proteínas Quinases/metabolismo , Proteoma/metabolismo , Especificidade por Substrato , Transcriptoma/genética
6.
Cell ; 182(1): 226-244.e17, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32649875

RESUMO

Lung cancer in East Asia is characterized by a high percentage of never-smokers, early onset and predominant EGFR mutations. To illuminate the molecular phenotype of this demographically distinct disease, we performed a deep comprehensive proteogenomic study on a prospectively collected cohort in Taiwan, representing early stage, predominantly female, non-smoking lung adenocarcinoma. Integrated genomic, proteomic, and phosphoproteomic analysis delineated the demographically distinct molecular attributes and hallmarks of tumor progression. Mutational signature analysis revealed age- and gender-related mutagenesis mechanisms, characterized by high prevalence of APOBEC mutational signature in younger females and over-representation of environmental carcinogen-like mutational signatures in older females. A proteomics-informed classification distinguished the clinical characteristics of early stage patients with EGFR mutations. Furthermore, integrated protein network analysis revealed the cellular remodeling underpinning clinical trajectories and nominated candidate biomarkers for patient stratification and therapeutic intervention. This multi-omic molecular architecture may help develop strategies for management of early stage never-smoker lung adenocarcinoma.


Assuntos
Progressão da Doença , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteogenômica , Fumar/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinógenos/toxicidade , Estudos de Coortes , Citosina Desaminase/metabolismo , Ásia Oriental , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Genoma Humano , Humanos , Metaloproteinases da Matriz/metabolismo , Mutação/genética , Análise de Componente Principal
7.
Cell ; 183(5): 1436-1456.e31, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33212010

RESUMO

The integration of mass spectrometry-based proteomics with next-generation DNA and RNA sequencing profiles tumors more comprehensively. Here this "proteogenomics" approach was applied to 122 treatment-naive primary breast cancers accrued to preserve post-translational modifications, including protein phosphorylation and acetylation. Proteogenomics challenged standard breast cancer diagnoses, provided detailed analysis of the ERBB2 amplicon, defined tumor subsets that could benefit from immune checkpoint therapy, and allowed more accurate assessment of Rb status for prediction of CDK4/6 inhibitor responsiveness. Phosphoproteomics profiles uncovered novel associations between tumor suppressor loss and targetable kinases. Acetylproteome analysis highlighted acetylation on key nuclear proteins involved in the DNA damage response and revealed cross-talk between cytoplasmic and mitochondrial acetylation and metabolism. Our results underscore the potential of proteogenomics for clinical investigation of breast cancer through more accurate annotation of targetable pathways and biological features of this remarkably heterogeneous malignancy.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Carcinogênese/patologia , Terapia de Alvo Molecular , Proteogenômica , Desaminases APOBEC/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Estudos de Coortes , Dano ao DNA , Reparo do DNA , Feminino , Humanos , Imunoterapia , Metabolômica , Pessoa de Meia-Idade , Mutagênese/genética , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Receptor ErbB-2/metabolismo , Proteína do Retinoblastoma/metabolismo , Microambiente Tumoral/imunologia
8.
Cell ; 179(2): 561-577.e22, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585088

RESUMO

We performed the first proteogenomic characterization of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) using paired tumor and adjacent liver tissues from 159 patients. Integrated proteogenomic analyses revealed consistency and discordance among multi-omics, activation status of key signaling pathways, and liver-specific metabolic reprogramming in HBV-related HCC. Proteomic profiling identified three subgroups associated with clinical and molecular attributes including patient survival, tumor thrombus, genetic profile, and the liver-specific proteome. These proteomic subgroups have distinct features in metabolic reprogramming, microenvironment dysregulation, cell proliferation, and potential therapeutics. Two prognostic biomarkers, PYCR2 and ADH1A, related to proteomic subgrouping and involved in HCC metabolic reprogramming, were identified. CTNNB1 and TP53 mutation-associated signaling and metabolic profiles were revealed, among which mutated CTNNB1-associated ALDOA phosphorylation was validated to promote glycolysis and cell proliferation. Our study provides a valuable resource that significantly expands the knowledge of HBV-related HCC and may eventually benefit clinical practice.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , Frutose-Bifosfato Aldolase/genética , Vírus da Hepatite B , Hepatite B Crônica/complicações , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , Proteogenômica/métodos , beta Catenina/genética , Animais , Proliferação de Células , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Microambiente Tumoral/genética
10.
Clin Proteomics ; 21(1): 7, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291365

RESUMO

BACKGROUND: Omics characterization of pancreatic adenocarcinoma tissue is complicated by the highly heterogeneous and mixed populations of cells. We evaluate the feasibility and potential benefit of using a coring method to enrich specific regions from bulk tissue and then perform proteogenomic analyses. METHODS: We used the Biopsy Trifecta Extraction (BioTExt) technique to isolate cores of epithelial-enriched and stroma-enriched tissue from pancreatic tumor and adjacent tissue blocks. Histology was assessed at multiple depths throughout each core. DNA sequencing, RNA sequencing, and proteomics were performed on the cored and bulk tissue samples. Supervised and unsupervised analyses were performed based on integrated molecular and histology data. RESULTS: Tissue cores had mixed cell composition at varying depths throughout. Average cell type percentages assessed by histology throughout the core were better associated with KRAS variant allele frequencies than standard histology assessment of the cut surface. Clustering based on serial histology data separated the cores into three groups with enrichment of neoplastic epithelium, stroma, and acinar cells, respectively. Using this classification, tumor overexpressed proteins identified in bulk tissue analysis were assigned into epithelial- or stroma-specific categories, which revealed novel epithelial-specific tumor overexpressed proteins. CONCLUSIONS: Our study demonstrates the feasibility of multi-omics data generation from tissue cores, the necessity of interval H&E stains in serial histology sections, and the utility of coring to improve analysis over bulk tissue data.

11.
Clin Proteomics ; 19(1): 36, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266629

RESUMO

BACKGROUND: The identification of differentially expressed tumor-associated proteins and genomic alterations driving neoplasia is critical in the development of clinical assays to detect cancers and forms the foundation for understanding cancer biology. One of the challenges in the analysis of pancreatic ductal adenocarcinoma (PDAC) is the low neoplastic cellularity and heterogeneous composition of bulk tumors. To enrich neoplastic cells from bulk tumor tissue, coring, and laser microdissection (LMD) sampling techniques have been employed. In this study, we assessed the protein and KRAS mutation changes associated with samples obtained by these enrichment techniques and evaluated the fraction of neoplastic cells in PDAC for proteomic and genomic analyses. METHODS: Three fresh frozen PDAC tumors and their tumor-matched normal adjacent tissues (NATs) were obtained from three sampling techniques using bulk, coring, and LMD; and analyzed by TMT-based quantitative proteomics. The protein profiles and characterizations of differentially expressed proteins in three sampling groups were determined. These three PDACs and samples of five additional PDACs obtained by the same three sampling techniques were also subjected to genomic analysis to characterize KRAS mutations. RESULTS: The neoplastic cellularity of eight PDACs ranged from less than 10% to over 80% based on morphological review. Distinctive proteomic patterns and abundances of certain tumor-associated proteins were revealed when comparing the tumors and NATs by different sampling techniques. Coring and bulk tissues had comparable proteome profiles, while LMD samples had the most distinct proteome composition compared to bulk tissues. Further genomic analysis of bulk, cored, or LMD samples demonstrated that KRAS mutations were significantly enriched in LMD samples while coring was less effective in enriching for KRAS mutations when bulk tissues contained a relatively low neoplastic cellularity. CONCLUSIONS: In addition to bulk tissues, samples from LMD and coring techniques can be used for proteogenomic studies. The greatest enrichment of neoplastic cellularity is obtained with the LMD technique.

12.
BMC Cancer ; 21(1): 310, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33761896

RESUMO

BACKGROUND: Chromosomal inversions involving anaplastic lymphoma kinase (ALK) and echinoderm microtubule associated protein like 4 (EML4) generate a fusion protein EML4-ALK in non-small cell lung cancer (NSCLC). The understanding of EML4-ALK function can be improved by a functional study using normal human cells. METHODS: Here we for the first time conduct such study to examine the effects of EML4-ALK on cell proliferation, cellular senescence, DNA damage, gene expression profiles and transformed phenotypes. RESULTS: The lentiviral expression of EML4-ALK in mortal, normal human fibroblasts caused, through its constitutive ALK kinase activity, an early induction of cellular senescence with accumulated DNA damage, upregulation of p16INK4A and p21WAF1, and senescence-associated ß-galactosidase (SA-ß-gal) activity. In contrast, when EML4-ALK was expressed in normal human fibroblasts transduced with telomerase reverse transcriptase (hTERT), which is activated in the vast majority of NSCLC, the cells showed accelerated proliferation and acquired anchorage-independent growth ability in soft-agar medium, without accumulated DNA damage, chromosome aberration, nor p53 mutation. EML4-ALK induced the phosphorylation of STAT3 in both mortal and hTERT-transduced cells, but RNA sequencing analysis suggested that the different signaling pathways contributed to the different phenotypic outcomes in these cells. While EML4-ALK also induced anchorage-independent growth in hTERT-immortalized human bronchial epithelial cells in vitro, the expression of EML4-ALK alone did not cause detectable in vivo tumorigenicity in immunodeficient mice. CONCLUSIONS: Our data indicate that the expression of hTERT is critical for EML4-ALK to manifest its in vitro transforming activity in human cells. This study provides the isogenic pairs of human cells with and without EML4-ALK expression.


Assuntos
Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Proteínas de Fusão Oncogênica/metabolismo , Telomerase/metabolismo , Animais , Carcinogênese/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular , Proliferação de Células/genética , Senescência Celular/genética , Dano ao DNA , Modelos Animais de Doenças , Células Epiteliais , Feminino , Fibroblastos , Regulação Neoplásica da Expressão Gênica , Vetores Genéticos/genética , Humanos , Lentivirus/genética , Neoplasias Pulmonares/patologia , Camundongos , Proteínas de Fusão Oncogênica/genética , RNA-Seq , Telomerase/genética , Homeostase do Telômero/genética , Transfecção
13.
Pharmacogenomics J ; 19(1): 5-14, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30190521

RESUMO

Platinum-based chemotherapy is commonly used to treat non-small cell lung cancer (NSCLC). However, its efficacy is limited and no molecular biomarkers that predict response are available. In this review, we summarize current knowledge concerning potential epigenetic predictive markers for platinum-based chemotherapy response in NSCLC. A systematic search of PubMed and ClinicalTrials.gov using keywords "non-small cell lung cancer" combined with "chemotherapy predictive biomarkers", "chemotherapy epigenetics biomarkers", "chemotherapy microRNA biomarkers", "chemotherapy DNA methylation" and "chemotherapy miRNA biomarkers" revealed 1740 articles from PubMed and 36 clinical trials. Finally, 22 papers and no trials fulfilled the review criteria. Among miRNA, combination of miR-1290, miR-196b and miR-135a in tumor tissue, and miR-21, miR-25, miR27b, and miR-326 in plasma were predictive for response to platinum-based chemotherapy in advanced NSCLC. RASSF1A methylation measured in tumor or blood was predictive for response to neoadjuvant chemotherapy. These biomarkers remain experimental and none have been tested in a prospective trial.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Compostos Organoplatínicos/uso terapêutico , Ensaios Clínicos como Assunto , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Epigenômica/métodos , Humanos
14.
Hum Mol Genet ; 25(10): 2060-2069, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26984941

RESUMO

The Werner syndrome (WS) is a prototypic adult Mendelian progeroid syndrome in which signs of premature aging are associated with genomic instability and an elevated risk of cancer. The WRN RECQ helicase protein binds and unwinds G-quadruplex (G4) DNA substrates in vitro, and we identified significant enrichment in G4 sequence motifs at the transcription start site and 5' ends of first introns (false discovery rate < 0.001) of genes down-regulated in WS patient fibroblasts. This finding provides strong evidence that WRN binds G4 DNA structures at many chromosomal sites to modulate gene expression. WRN appears to bind a distinct subpopulation of G4 motifs in human cells, when compared with the related Bloom syndrome RECQ helicase protein. Functional annotation of the genes and miRNAs altered in WS provided new insight into WS disease pathogenesis. WS patient fibroblasts displayed altered expression of multiple, mechanistically distinct, senescence-associated gene expression programs, with altered expression of disease-associated miRNAs, and dysregulation of canonical pathways that regulate cell signaling, genome stability and tumorigenesis. WS fibroblasts also displayed a highly statistically significant and distinct gene expression signature, with coordinate overexpression of nearly all of the cytoplasmic tRNA synthetases and associated ARS-interacting multifunctional protein genes. The 'non-canonical' functions of many of these upregulated tRNA charging proteins may together promote WS disease pathogenesis. Our results identify the human WRN RECQ protein as a G4 helicase that modulates gene expression in G4-dependent fashion at many chromosomal sites and provide several new and unexpected mechanistic insights into WS disease pathogenesis.


Assuntos
Proteínas de Ligação a DNA/genética , Instabilidade Genômica/genética , Neoplasias/genética , RecQ Helicases/genética , Síndrome de Werner/genética , Carcinogênese/genética , Proteínas de Ligação a DNA/metabolismo , Fibroblastos , Quadruplex G , Regulação da Expressão Gênica , Genoma Humano , Humanos , MicroRNAs , Neoplasias/patologia , Motivos de Nucleotídeos , RecQ Helicases/metabolismo
15.
Gastroenterology ; 150(4): 931-43, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26764183

RESUMO

BACKGROUND & AIMS: A long duration of inflammatory bowel disease (IBD) increases the risk for colorectal cancer. Mutation analysis of limited numbers of genes has indicated that colorectal tumors that develop in patients with IBD differ from those of patients without IBD. We performed whole-exome sequencing analyses to characterize the genetic landscape of these tumors. METHODS: We collected colorectal tumor and non-neoplastic tissues from 31 patients with IBD and colorectal cancer (15 with ulcerative colitis, 14 with Crohn's disease, and 2 with indeterminate colitis) and performed whole-exome sequencing analyses of the microdissected tumor and matched nontumor tissues. We identified somatic alterations by comparing matched specimens. The prevalence of mutations in sporadic colorectal tumors was obtained from previously published exome-sequencing studies. RESULTS: Two specimens had somatic mutations in the DNA proofreading or mismatch repair genes POLE, MLH1, and MSH6 and the tumor cells had a hypermutable phenotype. The remaining tumors had, on average, 71 alterations per sample. TP53 was the most commonly mutated gene, with prevalence similar to that of sporadic colorectal tumors (63% of cases). However, tumors from the patients with IBD had a different mutation spectrum. APC and KRAS were mutated at significantly lower rates in tumors from patients with IBD than in sporadic colorectal tumors (13% and 20% of cases, respectively). Several genes were mutated more frequently or uniquely in tumors from patients with IBD, including SOX9 and EP300 (which encode proteins in the WNT pathway), NRG1 (which encodes an ERBB ligand), and IL16 (which encodes a cytokine). Our study also revealed recurrent mutations in components of the Rho and Rac GTPase network, indicating a role for noncanonical WNT signaling in development of colorectal tumors in patients with IBD. CONCLUSIONS: Colorectal tumors that develop in patients with IBD have distinct genetic features from sporadic colorectal tumors. These findings could be used to develop disease-specific markers for diagnosis and treatment of patients with IBD and colorectal cancer.


Assuntos
Biomarcadores Tumorais/genética , Transformação Celular Neoplásica/genética , Colite Ulcerativa/genética , Neoplasias Colorretais/genética , Doença de Crohn/genética , Análise Mutacional de DNA , Exoma , Mutação , Colite Ulcerativa/complicações , Colite Ulcerativa/diagnóstico , Neoplasias Colorretais/diagnóstico , Doença de Crohn/complicações , Doença de Crohn/diagnóstico , Variações do Número de Cópias de DNA , Dosagem de Genes , Frequência do Gene , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Fenótipo
16.
Proc Natl Acad Sci U S A ; 111(27): 9905-10, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-24958861

RESUMO

Bloom syndrome is a rare autosomal recessive disorder characterized by genetic instability and cancer predisposition, and caused by mutations in the gene encoding the Bloom syndrome, RecQ helicase-like (BLM) protein. To determine whether altered gene expression might be responsible for pathological features of Bloom syndrome, we analyzed mRNA and microRNA (miRNA) expression in fibroblasts from individuals with Bloom syndrome and in BLM-depleted control fibroblasts. We identified mRNA and miRNA expression differences in Bloom syndrome patient and BLM-depleted cells. Differentially expressed mRNAs are connected with cell proliferation, survival, and molecular mechanisms of cancer, and differentially expressed miRNAs target genes involved in cancer and in immune function. These and additional altered functions or pathways may contribute to the proportional dwarfism, elevated cancer risk, immune dysfunction, and other features observed in Bloom syndrome individuals. BLM binds to G-quadruplex (G4) DNA, and G4 motifs were enriched at transcription start sites (TSS) and especially within first introns (false discovery rate ≤ 0.001) of differentially expressed mRNAs in Bloom syndrome compared with normal cells, suggesting that G-quadruplex structures formed at these motifs are physiologic targets for BLM. These results identify a network of mRNAs and miRNAs that may drive the pathogenesis of Bloom syndrome.


Assuntos
Síndrome de Bloom/genética , DNA/química , Quadruplex G , Regulação Enzimológica da Expressão Gênica , RecQ Helicases/genética , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , RNA Mensageiro/genética
17.
J Transl Med ; 14(1): 295, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27756323

RESUMO

The goal of biomarker research is to identify clinically valid markers. Despite decades of research there has been disappointingly few molecules or techniques that are in use today. The "1st International NTNU Symposium on Current and Future Clinical Biomarkers of Cancer: Innovation and Implementation", was held June 16th and 17th 2016, at the Knowledge Center of the St. Olavs Hospital in Trondheim, Norway, under the auspices of the Norwegian University of Science and Technology (NTNU) and the HUNT biobank and research center. The Symposium attracted approximately 100 attendees and invited speakers from 12 countries and 4 continents. In this Symposium original research and overviews on diagnostic, predictive and prognostic cancer biomarkers in serum, plasma, urine, pleural fluid and tumor, circulating tumor cells and bioinformatics as well as how to implement biomarkers in clinical trials were presented. Senior researchers and young investigators presented, reviewed and vividly discussed important new developments in the field of clinical biomarkers of cancer, with the goal of accelerating biomarker research and implementation. The excerpts of this symposium aim to give a cutting-edge overview and insight on some highly important aspects of clinical cancer biomarkers to-date to connect molecular innovation with clinical implementation to eventually improve patient care.


Assuntos
Biomarcadores Tumorais/metabolismo , Internacionalidade , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/urina , Bases de Dados como Assunto , Humanos , Neoplasias/sangue , Neoplasias/patologia , Neoplasias/urina , Noruega , Reprodutibilidade dos Testes
18.
PLoS Genet ; 9(2): e1003251, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23408900

RESUMO

Deletion of tumor suppressor genes in stromal fibroblasts induces epithelial cancer development, suggesting an important role of stroma in epithelial homoeostasis. However, the underlying mechanisms remain to be elucidated. Here we report that deletion of the gene encoding TGFß receptor 2 (Tgfbr2) in the stromal fibroblasts (Tgfbr2(fspKO)) induces inflammation and significant DNA damage in the neighboring epithelia of the forestomach. This results in loss or down-regulation of cyclin-dependent kinase inhibitors p15, p16, and p21, which contribute to the development of invasive squamous cell carcinoma (SCC). Anti-inflammation treatment restored p21 expression, delayed tumorigenesis, and increased survival of Tgfbr2(fspKO) mice. Our data demonstrate for the first time that inflammation is a critical player in the epigenetic silencing of p21 in tumor progression. Examination of human esophageal SCC showed a down-regulation of TGFß receptor 2 (TßRII) in the stromal fibroblasts, as well as increased inflammation, DNA damage, and loss or decreased p15/p16 expression. Our study suggests anti-inflammation may be a new therapeutic option in treating human SCCs with down-regulation of TßRII in the stroma.


Assuntos
Neoplasias da Mama , Carcinoma de Células Escamosas , Transformação Celular Neoplásica/genética , Neoplasias Esofágicas , Proteínas Serina-Treonina Quinases , Receptores de Fatores de Crescimento Transformadores beta , Fator de Crescimento Transformador beta , Animais , Apoptose/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Regulação para Baixo , Epigênese Genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago , Feminino , Fibroblastos , Humanos , Inflamação/genética , Camundongos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Células Estromais/citologia , Células Estromais/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
19.
Carcinogenesis ; 36(6): 616-21, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25863124

RESUMO

Small cell lung cancer (SCLC) is the most aggressive type of lung cancer. Only 15% of SCLC patients survive beyond 2 years after diagnosis. Therefore, for the improvement of patients' outcome in this disease, it is necessary to identify genetic alterations applicable as therapeutic targets in SCLC cells. The purpose of this study is the identification of genes frequently mutated and expressed in SCLCs that will be targetable for therapy of SCLC patients. Exome sequencing was performed in 28 primary tumors and 16 metastatic tumors from 38 patients with SCLCs. Expression of mutant alleles was verified in 19 cases by RNA sequencing. TP53, RB1 and PTEN were identified as being significantly mutated genes. Additional 36 genes were identified as being frequently (≥10%) mutated in SCLCs by combining the results of this study and two recent studies. Mutated alleles were expressed in 8 of the 36 genes, TMEM132D, SPTA1, VPS13B, CSMD2, ANK2, ASTN1, ASPM and FBN3. In particular, the TMEM132D, SPTA1 and VPS13B genes were commonly mutated in both early and late stage tumors, primary tumors and metastases, and tumors before and after chemotherapy, as in the case of the TP53 and RB1 genes. Therefore, in addition to TP53, RB1 and PTEN, TMEM132D, SPTA1 and VPS13B could be also involved in SCLC development, with the products from their mutated alleles being potential therapeutic targets in SCLC patients.


Assuntos
Neoplasias Pulmonares/genética , Mutação/genética , Carcinoma de Pequenas Células do Pulmão/genética , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases , Exoma/genética , Feminino , Frequência do Gene , Humanos , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , PTEN Fosfo-Hidrolase/genética , Proteína do Retinoblastoma/genética , Análise de Sequência de RNA , Espectrina/genética , Proteína Supressora de Tumor p53/genética , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA