Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Res Sq ; 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37502905

RESUMO

Objective: We designed and implemented a novel neonatal intensive care (NICU) lighting system to support current understanding of sunlight-coupled physiology. Methods: We created a system that generates wavelengths corresponding to the known blue and violet activation spectra of non-visual opsins. These are known to mediate energy management and related physiologic activity. Results: Light produced by the system spans the visible spectrum, including violet wavelengths that are blocked by modern glazing and not emitted by standard LED fixtures. System features include automated light and dark phases that mimic dawn/dusk. The system also matches length of day seasonality. Spectral composition can be varied to support translational research protocols. Implementation required a comprehensive strategy to inform bedside providers about the value and use of the lighting system. Conclusion: Full-spectrum lighting for the NICU is feasible and will inform optimization of the NICU environment of care to support optimal neonatal growth and development.

2.
J Perinatol ; 43(Suppl 1): 49-54, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086967

RESUMO

OBJECTIVE: We designed and implemented a novel neonatal intensive care (NICU) lighting system to support the current understanding of daylight-coupled physiology. METHODS: We created a system that generates wavelengths corresponding to the known blue and violet activation spectra of non-visual opsins. These are known to mediate energy management and related physiologic activity. RESULTS: Light produced by the system spans the visible spectrum, including violet wavelengths that are blocked by modern glazing and not emitted by standard LED fixtures. System features include automated light and dark phases that mimic dawn/dusk. The system also matches length of day seasonality. Spectral composition can be varied to support translational research protocols. Implementation required a comprehensive strategy to inform bedside providers about the value and use of the lighting system. CONCLUSION: Full-spectrum lighting for the NICU is feasible and will inform the optimization of the NICU environment of care to support optimal neonatal growth and development.


Assuntos
Terapia Intensiva Neonatal , Iluminação , Recém-Nascido , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA