Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(22): e2401409121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38776367

RESUMO

Many soft materials yield under mechanical loading, but how this transition from solid-like behavior to liquid-like behavior occurs can vary significantly. Understanding the physics of yielding is of great interest for the behavior of biological, environmental, and industrial materials, including those used as inks in additive manufacturing and muds and soils. For some materials, the yielding transition is gradual, while others yield abruptly. We refer to these behaviors as being ductile and brittle. The key rheological signatures of brittle yielding include a stress overshoot in steady-shear-startup tests and a steep increase in the loss modulus during oscillatory amplitude sweeps. In this work, we show how this spectrum of yielding behaviors may be accounted for in a continuum model for yield stress materials by introducing a parameter we call the brittility factor. Physically, an increased brittility decreases the contribution of recoverable deformation to plastic deformation, which impacts the rate at which yielding occurs. The model predictions are successfully compared to results of different rheological protocols from a number of real yield stress fluids with different microstructures, indicating the general applicability of the phenomenon of brittility. Our study shows that the brittility of soft materials plays a critical role in determining the rate of the yielding transition and provides a simple tool for understanding its effects under various loading conditions.

2.
Proc Natl Acad Sci U S A ; 121(2): e2313658121, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38170750

RESUMO

The ability to concisely describe the dynamical behavior of soft materials through closed-form constitutive relations holds the key to accelerated and informed design of materials and processes. The conventional approach is to construct constitutive relations through simplifying assumptions and approximating the time- and rate-dependent stress response of a complex fluid to an imposed deformation. While traditional frameworks have been foundational to our current understanding of soft materials, they often face a twofold existential limitation: i) Constructed on ideal and generalized assumptions, precise recovery of material-specific details is usually serendipitous, if possible, and ii) inherent biases that are involved by making those assumptions commonly come at the cost of new physical insight. This work introduces an approach by leveraging recent advances in scientific machine learning methodologies to discover the governing constitutive equation from experimental data for complex fluids. Our rheology-informed neural network framework is found capable of learning the hidden rheology of a complex fluid through a limited number of experiments. This is followed by construction of an unbiased material-specific constitutive relation that accurately describes a wide range of bulk dynamical behavior of the material. While extremely efficient in closed-form model discovery for a real-world complex system, the model also provides insight into the underpinning physics of the material.

3.
Proc Natl Acad Sci U S A ; 121(9): e2313617121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377215

RESUMO

Additive manufacturing capable of controlling and dynamically modulating structures down to the nanoscopic scale remains challenging. By marrying additive manufacturing with self-assembly, we develop a UV (ultra-violet)-assisted direct ink write approach for on-the-fly modulation of structural color by programming the assembly kinetics through photo-cross-linking. We design a photo-cross-linkable bottlebrush block copolymer solution as a printing ink that exhibits vibrant structural color (i.e., photonic properties) due to the nanoscopic lamellar structures formed post extrusion. By dynamically modulating UV-light irradiance during printing, we can program the color of the printed material to access a broad spectrum of visible light with a single ink while also creating color gradients not previously possible. We unveil the mechanism of this approach using a combination of coarse-grained simulations, rheological measurements, and structural characterizations. Central to the assembly mechanism is the matching of the cross-linking timescale with the assembly timescale, which leads to kinetic trapping of the assembly process that evolves structural color from blue to red driven by solvent evaporation. This strategy of integrating cross-linking chemistry and out-of-equilibrium processing opens an avenue for spatiotemporal control of self-assembled nanostructures during additive manufacturing.

4.
Proc Natl Acad Sci U S A ; 120(18): e2215517120, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094149

RESUMO

We probe the microstructural yielding dynamics of a concentrated colloidal system by performing creep/recovery tests with simultaneous collection of coherent scattering data via X-ray Photon Correlation Spectroscopy (XPCS). This combination of rheology and scattering allows for time-resolved observations of the microstructural dynamics as yielding occurs, which can be linked back to the applied rheological deformation to form structure-property relations. Under sufficiently small applied creep stresses, examination of the correlation in the flow direction reveals that the scattering response recorrelates with its predeformed state, indicating nearly complete microstructural recovery, and the dynamics of the system under these conditions slows considerably. Conversely, larger creep stresses increase the speed of the dynamics under both applied creep and recovery. The data show a strong connection between the microstructural dynamics and the acquisition of unrecoverable strain. By comparing this relationship to that predicted from homogeneous, affine shearing, we find that the yielding transition in concentrated colloidal systems is highly heterogeneous on the microstructural level.

5.
Proc Natl Acad Sci U S A ; 119(20): e2202234119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35544690

RESUMO

SignificanceScience-based data-driven methods that can describe the rheological behavior of complex fluids can be transformative across many disciplines. Digital rheometer twins, which are developed here, can significantly reduce the cost, time, and energy required to characterize complex fluids and predict their future behavior. This is made possible by combining two different methods of informing neural networks with the rheological underpinnings of a system, resulting in quantitative recovery of a gel's response to different flow protocols. The platform developed here is general enough that it can be extended to areas well beyond complex fluids modeling.

6.
Soft Matter ; 19(48): 9379-9388, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37681714

RESUMO

Probing the transient microstructure of soft matter far from equilibrium is an ongoing challenge to understanding material processing. In this work, we investigate inverse worm-like micelles undergoing large amplitude oscillatory shear using time-resolved dielectric spectroscopy. By controlling the Weissenburg number, we compare the non-linear microstructure response of branched and unbranched worm-like micelles and isolate distinct elastic effects that manifest near flow reversal. We validate our dielectric measurements with small angle neutron scattering and employ sequence of physical processes to disentangle the elastic and viscous contributions of the stress.

7.
Proc Natl Acad Sci U S A ; 117(36): 21945-21952, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32839307

RESUMO

Materials that exhibit yielding behavior are used in many applications, from spreadable foods and cosmetics to direct write three-dimensional printing inks and filled rubbers. Their key design feature is the ability to transition behaviorally from solid to fluid under sufficient load or deformation. Despite its widespread applications, little is known about the dynamics of yielding in real processes, as the nonequilibrium nature of the transition impedes understanding. We demonstrate an iteratively punctuated rheological protocol that combines strain-controlled oscillatory shear with stress-controlled recovery tests. This technique provides an experimental decomposition of recoverable and unrecoverable strains, allowing for solid-like and fluid-like contributions to a yield stress material's behavior to be separated in a time-resolved manner. Using this protocol, we investigate the overshoot in loss modulus seen in materials that yield. We show that this phenomenon is caused by the transition from primarily solid-like, viscoelastic dissipation in the linear regime to primarily fluid-like, plastic flow at larger amplitudes. We compare and contrast this with a viscoelastic liquid with no yielding behavior, where the contribution to energy dissipation from viscous flow dominates over the entire range of amplitudes tested.

8.
Langmuir ; 38(9): 2961-2971, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35220714

RESUMO

While the dynamic properties of ionic liquids (ILs) in nanoconfinement play a crucial role in the performance of IL-based electrochemical and mechanical devices, experimental work mostly falls short at reporting "solid-like" versus "liquid-like" behavior of confined ILs. The present work is the first to conduct frequency-sweep oscillatory-shear rheology on IL nanofilms, reconciling the solid-versus-liquid debate and revealing the importance of shear rate in the behavior. We disentangle and analyze the viscoelasticity of nanoconfined ILs and shed light on their relaxation mechanisms. Furthermore, a master curve describes the scaling of the dynamic behavior of four (non-hydrogen-bonding) ILs under nanoconfinement and reveals the role of the compressibility of the flow units.

9.
Langmuir ; 38(37): 11160-11170, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36053575

RESUMO

Aqueous polymer colloids known as latexes are widely used in coating applications. Multicomponent latexes comprised of two incompatible polymeric species organized into a core-shell particle morphology are a promising system for self-stratifying coatings that spontaneously partition into multiple layers, thereby yielding complex structured coatings requiring only a single application step. Developing new materials for self-stratifying coatings requires a clear understanding of the thermodynamic and kinetic properties governing phase separation and polymeric species transport. In this work, we study phase separation and self-stratification in polymer films based on multicomponent acrylic (shell) and acrylic-silicone (core) latex particles. Our results show that the molecular weight of the shell polymer and heat aging conditions of the film critically determine the underlying transport phenomena, which ultimately controls phase separation in the film. Unentangled shell polymers result in efficient phase separation within hours with heat aging at reasonable temperatures, whereas entangled shell polymers effectively inhibit phase separation even under extensive heat aging conditions over a period of months due to kinetic limitations. Transmission electron microscopy is used to track morphological changes as a function of thermal aging. Interestingly, our results show that the rheological properties of the latex films are highly sensitive to morphology, and linear shear rheology is used to understand morphological changes. Overall, these results highlight the importance of bulk rheology as a simple and effective tool for understanding changes in morphology in multicomponent latex films.

10.
Phys Rev Lett ; 126(21): 218002, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34114843

RESUMO

The physics above and below the yield stress is unified by a simple model for viscoplasticity that accounts for the nonlinear rheology of multiple yield stress fluids. The model has a rate-dependent relaxation time, allows for plastic deformation below the yield stress, and indicates that rapid elastic deformation aids yielding. A range of commonly observed rheological behaviors are predicted, including the smooth overshoot in the loss modulus and the recently discovered contributions from recoverable and unrecoverable strains in amplitude sweeps.

11.
Soft Matter ; 16(21): 4919-4931, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32393953

RESUMO

A structure-property-process relation is established for a diblock bottlebrush copolymer solution, through a combination of rheo-neutron scattering, imaging, and rheological measurements. Polylactic acid-b-polystyrene diblock bottlebrush copolymers were dispersed in toluene with a concentration of 175 mg ml-1, where they self-assembled into a lamellar phase. All measurements were carried out at 5 °C. The solution color, as observed in reflection, is shown to be a function of the shear rate. Under equilibrium and near-equilibrium conditions, the solution has a green color. At low shear rates the solution remains green, while at intermediate rates the solution is cyan. At the highest rates applied the solution is indigo. The lamellar spacing is shown to be a decreasing function of shear rate, partially accounting for the color change. The lamellae are oriented 'face-on' with the wall under quiescence and low shear rates, while a switch to 'edge-on' is observed at the highest shear rates, where the reflected color disappears. The intramolecular distance between bottlebrush polymers does not change with shear rate, although at high shear rates, the bottlebrush polymers are preferentially aligned in the vorticity direction within the lamellae. We therefore form a consistent relation between structure and function, spanning a wide range of length scales and shear rates.

12.
Phys Rev Lett ; 122(24): 248003, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31322410

RESUMO

The recoverable strain is shown to correlate to the temporal evolution of microstructure via time-resolved small-angle neutron scattering and dynamic shear rheology. Investigating two distinct polymeric materials of wormlike micelles and fibrin network, we demonstrate that, in addition to the nonlinear structure-property relationships, the shear and normal stress evolution is dictated by the recoverable strain. A distinct sequence of physical processes under large amplitude oscillatory shear (LAOS) is identified that clearly contains information regarding both the steady-state flow curve and the linear-regime frequency sweep, contrary to most interpretations that LAOS responses are either distinct from or somehow intermediate between the two cases. This work provides a physically motivated and straightforward path to further explore the structure-property relationships of viscoelastic materials under dynamic flow conditions.

13.
Biomacromolecules ; 20(6): 2198-2206, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31046247

RESUMO

The diverse requirements of hydrogels for tissue engineering motivate the development of cross-linking reactions to fabricate hydrogel networks with specific features, particularly those amenable to the activity of biological materials (e.g., cells, proteins) that do not require exposure to UV light. We describe gelation kinetics for a library of thiolated poly(ethylene glycol) sulfhydryl hydrogels undergoing enzymatic cross-linking via horseradish peroxidase, a catalyst-driven reaction activated by hydrogen peroxide. We report the use of small-amplitude oscillatory shear (SAOS) to quantify gelation kinetics as a function of reaction conditions (hydrogen peroxide and polymer concentrations). We employ a novel approach to monitor the change of viscoelastic properties of hydrogels over the course of gelation (Δ tgel) via the time derivative of the storage modulus (d G'/d t). This approach, fundamentally distinct from traditional methods for defining a gel point, quantifies the time interval over which gelation events occur. We report that gelation depends on peroxide and polymer concentrations as well as system temperature, where the effects of hydrogen peroxide tend to saturate over a critical concentration. Further, this cross-linking reaction can be reversed using l-cysteine for rapid cell isolation, and the rate of hydrogel dissolution can be monitored using SAOS.


Assuntos
Hidrogéis/química , Polietilenoglicóis , Reologia , Cinética
14.
Soft Matter ; 15(14): 2928-2941, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30724969

RESUMO

Bottlebrush polymers are a class of macromolecules that have recently found use in a wide variety of materials, ranging from lubricating brushes and nanostructured coatings to elastomeric gels that exhibit structural colors. These polymers are characterized by dense branches extending from a central backbone and thus have properties distinct from linear polymers. It remains a challenge to specifically understand conformational properties of these molecules, due to the wide range of architectural parameters that can be present in a system, and thus there is a need to accurately characterize and model these molecules. In this paper, we use a combination of viscometry, light scattering, and computer simulations to gain insight into the conformational properties of dilute solution bottlebrush polymers. We focus on a series of model bottlebrushes consisting of a poly(norbornene) (PNB) backbone with poly(lactic acid) (PLA) side chains. We demonstrate that intrinsic viscosity and hydrodynamic radius are experimental observations sensitive to molecular architecture, exhibiting distinct differences with different choices of branches and backbone lengths. Informed by the atomistic structure of this PNB-PLA system, we rationalize a coarse-grained simulation model that we evaluate using a combination of Brownian dynamics and Monte Carlo simulations. We show that this exhibits quantitative matching to experimental results, enabling us to characterize the overall shape of the bottlebrush via a number of metrics that can be extended to more general bottlebrush architectures.

15.
Pediatr Exerc Sci ; 31(4): 448-457, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30982436

RESUMO

PURPOSE: A novel 4-task Athlete Introductory Movement Screen was developed and tested to provide an appropriate and reliable movement screening tool for youth sport practitioners. METHODS: The overhead squat, lunge, push-up, and a prone brace with shoulder touches were selected based on previous assessments. A total of 28 mixed-sport junior athletes (18 boys and 10 girls; mean age = 15.7 [1.8] y) completed screening after viewing standardized demonstration videos. Athletes were filmed performing 8 repetitions of each task and assessed retrospectively by 2 independent raters using a 3-point scale. The primary rater reassessed the footage 3 weeks later. A subgroup (n = 11) repeated the screening 7 days later, and a further 8 athletes were reassessed 6 months later. Intraclass correlation coefficients (ICC), typical error (TE), coefficient of variation (CV%), and weighted kappa (k) were used in reliability analysis. RESULTS: For the Athlete Introductory Movement Screen 4-task sum score, intrarater reliability was high (ICC = .97; CV = 2.8%), whereas interrater reliability was good (intraclass correlation coefficient = .88; CV = 5.6%). There was a range of agreement from fair to almost perfect (k = .31-.89) between raters across individual movements. A 7-day and 6-month test-retest held good reliability and acceptable CVs (≤ 10%) for sum scores. CONCLUSION: The 4-task Athlete Introductory Movement Screen appears to be a reliable tool for profiling emerging athletes. Reliability was strongest within the same rater; it was lower, yet acceptable, between 2 raters. Scores can provide an overview of appropriate movement competencies, helping practitioners assess training interventions in the athlete development pathway.


Assuntos
Atletas , Teste de Esforço/métodos , Movimento , Esportes Juvenis , Adolescente , Feminino , Humanos , Masculino , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Estudos Retrospectivos , Gravação em Vídeo
16.
Soft Matter ; 12(8): 2301-8, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26781708

RESUMO

A deconvolution protocol is developed for obtaining material responses from time-resolved small-angle scattering data from light (SALS), X-rays (SAXS), or neutrons (SANS). Previously used methods convolve material responses with information from the procedure used to group data into discrete time intervals, known as binning. We demonstrate that enhanced signal resolution can be obtained by using methods of signal processing to analyze time-resolved scattering data. The method is illustrated for a time-resolved rheo-SANS measurement of a complex, structured surfactant solution under oscillatory shear flow. We show how the underlying material response can be clearly decoupled from the binning procedure. This method greatly reduces the experimental acquisition time, by approximately one-third for the aforementioned rheo-SANS experiment.

17.
Soft Matter ; 10(24): 4312-23, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24788942

RESUMO

In this article we extend recent experimental developments [Rogers et al., Phys. Rev. Lett., 2012, 109, 098305] by providing a suitable theoretical framework for the derivation of exact expressions for the first cumulant (initial decay rate) of the correlation function measured in Evanescent Wave Dynamic Light Scattering (EWDLS) experiments. We focus on a dilute suspension of optically anisotropic spherical Brownian particles diffusing near a planar hard wall. In such a system, translational and rotational diffusion are hindered by hydrodynamic interactions with the boundary which reflects the flow incident upon it, affecting the motion of colloids. The validity of the approximation by the first cumulant for moderate times is assessed by juxtaposition to Brownian dynamics simulations, and compared with experimental results. The presented method for the analysis of experimental data allows the determination of penetration-depth-averaged rotational diffusion coefficients of spherical colloids at low density.

18.
Food Res Int ; 174(Pt 1): 113587, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986453

RESUMO

The nonlinear rheological behaviors of three different classes of foods (emulsion, suspension, and elastic network) were studied and analyzed using the Rogers Sequence of Physical Processes (SPP) method and the Ewoldt-McKinley method of coupling Fourier Transform with Chebyshev Decomposition (FTC). SPP analysis led to instantaneous rheological parameters G't and G″t at any point in time, providing a more accurate picture of the linear viscoelastic region and crossover points by the 3D amplitude sweep. When G't is plotted against G″t, the resulting graph is a deltoid which offers a detailed and distinctive intracycle behavior of each class of food. Analyzing the revolution of deltoids with increasing strain allows for the determination of a critical strain, beyond which irreversible network breakdown occurs. The strain range between the linear viscoelastic limit and the critical strain found in SPP is comparable to the MAOS region as determined with FTC. Under increasing amplitude, predominantly elastic networks showed a gradual structural rearrangement, while more erratic and abrupt changes were observed in the suspension and emulsion we studied. Under increasing frequency, elastic responses dominate viscous responses in all samples due to the shorter experimental time, allowing less relaxation.


Assuntos
Alimentos , Emulsões , Análise de Fourier , Fenômenos Físicos , Resistência ao Cisalhamento
19.
Ophthalmic Plast Reconstr Surg ; 28(3): 163-5, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22391740

RESUMO

PURPOSE: To assess the effect of upper eyelid blepharoplasty surgery on contrast sensitivity. METHODS: A prospective study was performed. Pre- and postoperative contrast sensitivity measurements were taken on patients undergoing routine upper eyelid blepharoplasty surgery. The patients were selected for surgery on the basis of a functional visual field effect from dermatochalasis. Contrast sensitivity was measured using a Pelli-Robson chart, read at 1 m under standard lighting conditions. This produces a result in log contrast sensitivity. Other data collected included visual acuity and an automated 60:4 visual field. A paired t test was used to assess the change in contrast sensitivity. RESULTS: 28 eyes of 14 patients underwent upper eyelid blepharoplasty surgery. The mean preoperative log contrast sensitivity was 1.49, and the mean postoperative log contrast sensitivity was 1.64. The mean increase in log contrast sensitivity was 0.14 (range 0-0.45). The increase in log contrast sensitivity was statistically significant (p = 0.00002). CONCLUSIONS: Dermatochalasis is well known to cause visual field defects in many patients. Anecdotally, patients often report that their vision is brighter following upper eyelid blepharoplasty. The authors have demonstrated a significant increase in contrast sensitivity in patients who have undergone upper eyelid blepharoplasty surgery. This information may be of use in justifying blepharoplasty surgery in the future.


Assuntos
Blefaroplastia , Sensibilidades de Contraste/fisiologia , Doenças Palpebrais/cirurgia , Pálpebras/patologia , Adulto , Idoso , Atrofia , Doenças Palpebrais/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Acuidade Visual/fisiologia , Campos Visuais/fisiologia
20.
Biomaterials ; 287: 121610, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35696784

RESUMO

Biofilm is a major cause of infections and infrastructure deterioration, largely due to molecular diffusion restrictions that hamper the antimicrobial activity of traditional antibiotics and disinfectants. Here, we present a self-locomotive, antimicrobial microrobot (SLAM) swarm that can penetrate, fracture, and detach biofilm and, in turn, nullify bacterial resistance to antibiotics. The SLAM is assembled by loading a controlled mass of manganese oxide nanosheets on diatoms with the polydopamine binder. In hydrogen peroxide solution, SLAMs produce oxygen bubbles that generate thrust to penetrate the rigid and dense Pseudomonas aeruginosa biofilm and self-assemble into a swarm that repeatedly surrounds, expands, and bursts oxygen bubbles. The resulting cavities continue to deform and fracture extracellular polymeric substances from microgrooved silicone substrates and wounded skin explants while decreasing the number of viable bacterial cells. Additionally, SLAM allows irrigating water or antibiotics to access the residual biofilm better, thus enhancing the synergistic efficacy in killing up to 99.9% of bacterial cells.


Assuntos
Anti-Infecciosos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Peróxido de Hidrogênio , Biofilmes , Pseudomonas aeruginosa , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA