RESUMO
The nucleobases comprising DNA and RNA aptamers provide considerably less chemical diversity than protein-based ligands, limiting their versatility. The introduction of novel functional groups at just one of the four bases in modified aptamers has recently led to dramatic improvement in the success rate of identifying nucleic acid ligands to protein targets. Here we explore the benefits of additional enhancement in physicochemical diversity by selecting modified DNA aptamers that contain amino-acid-like modifications on both pyrimidine bases. Using proprotein convertase subtilisin/kexin type 9 as a representative protein target, we identify specific pairwise combinations of modifications that result in higher affinity, metabolic stability, and inhibitory potency compared with aptamers with single modifications. Such doubly modified aptamers are also more likely to be encoded in shorter sequences and occupy nonoverlapping epitopes more frequently than aptamers with single modifications. These highly modified DNA aptamers have broad utility in research, diagnostic, and therapeutic applications.
Assuntos
Aptâmeros de Nucleotídeos , Técnica de Seleção de Aptâmeros , Linhagem Celular Tumoral , Desoxirribonucleases/metabolismo , Biblioteca Gênica , Humanos , Ligantes , Inibidores de PCSK9 , Pró-Proteína Convertase 9/química , Pró-Proteína Convertase 9/genéticaRESUMO
IL-6 is a secreted cytokine that functions through binding two cell surface receptors, IL-6Rα and gp130. Because of its involvement in the progression of several chronic inflammatory diseases, IL-6 is a target of pharmacologic interest. We have recently identified a novel class of ligands called SOMAmers (S low Off-rate Modified Aptamers) that bind IL-6 and inhibit its biologic activity. SOMAmers exploit the chemical diversity of protein-like side chains assembled on flexible nucleic acid scaffolds, resulting in an expanded repertoire of intra- and intermolecular interactions not achievable with conventional aptamers. Here, we report the co-crystal structure of a high affinity SOMAmer (Kd = 0.20 nm) modified at the 5-position of deoxyuridine in a complex with IL-6. The SOMAmer, comprised of a G-quartet domain and a stem-loop domain, engages IL-6 in a clamp-like manner over an extended surface exhibiting close shape complementarity with the protein. The interface is characterized by substantial hydrophobic interactions overlapping the binding surfaces of the IL-6Rα and gp130 receptors. The G-quartet domain retains considerable binding activity as a disconnected autonomous fragment (Kd = 270 nm). A single substitution from our diversely modified nucleotide library leads to a 37-fold enhancement in binding affinity of the G-quartet fragment (Kd = 7.4 nm). The ability to probe ligand surfaces in this manner is a powerful tool in the development of new therapeutic reagents with improved pharmacologic properties. The SOMAmer·IL-6 structure also expands our understanding of the diverse structural motifs achievable with modified nucleic acid libraries and elucidates the nature with which these unique ligands interact with their protein targets.
Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/farmacologia , Interleucina-6/química , Interleucina-6/metabolismo , Cristalografia por Raios X , Descoberta de Drogas , Humanos , Ligantes , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Técnica de Seleção de AptâmerosRESUMO
Selection of aptamers from nucleic acid libraries by in vitro evolution represents a powerful method of identifying high-affinity ligands for a broad range of molecular targets. Nevertheless, a sizeable fraction of proteins remain difficult targets due to inherently limited chemical diversity of nucleic acids. We have exploited synthetic nucleotide modifications that confer protein-like diversity on a nucleic acid scaffold, resulting in a new generation of binding reagents called SOMAmers (Slow Off-rate Modified Aptamers). Here we report a unique crystal structure of a SOMAmer bound to its target, platelet-derived growth factor B (PDGF-BB). The SOMAmer folds into a compact structure and exhibits a hydrophobic binding surface that mimics the interface between PDGF-BB and its receptor, contrasting sharply with mainly polar interactions seen in traditional protein-binding aptamers. The modified nucleotides circumvent the intrinsic diversity constraints of natural nucleic acids, thereby greatly expanding the structural vocabulary of nucleic acid ligands and considerably broadening the range of accessible protein targets.
Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Proteínas Proto-Oncogênicas c-sis/metabolismo , Técnica de Seleção de Aptâmeros/métodos , Motivos de Aminoácidos/genética , Becaplermina , Cristalografia por Raios X , Primers do DNA/genética , Dados de Sequência Molecular , Estrutura Molecular , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-sis/química , Análise de Sequência de DNA , Temperatura de TransiçãoRESUMO
Recent developments in aptamer chemistry open up opportunities for new tools for protein biosensing. In this work, we present an approach to use immobilized slow off-rate modified aptamers (SOMAmers) site-specifically labeled with a nitroxide radical via azide-alkyne click chemistry as a means for detecting protein binding. Protein binding induces a change in rotational mobility of the spin label, which is detected via solution-state electron paramagnetic resonance (EPR) spectroscopy. We demonstrate the workflow and test the protocol using the SOMAmer SL5 and its protein target, platelet-derived growth factor B (PDGF-BB). In a complete site scan of the nitroxide over the SOMAmer, we determine the rotational mobility of the spin label in the absence and presence of target protein. Several sites with sufficiently tight affinity and large rotational mobility change upon protein binding are identified. We then model a system where the spin-labeled SOMAmer assay is combined with fluorescence detection via diamond nitrogen-vacancy (NV) center relaxometry. The NV center spin-lattice relaxation time is modulated by the rotational mobility of a proximal spin label and thus responsive to SOMAmer-protein binding. The spin label-mediated assay provides a general approach for transducing protein binding events into magnetically detectable signals.
Assuntos
Oligonucleotídeos , Proteínas , Marcadores de Spin , Ligação Proteica , Espectroscopia de Ressonância de Spin Eletrônica/métodosRESUMO
The addition of novel side chains at the 5-position of uracil is an effective means to increase chemical diversity of aptamers and hence the success rate for discovery of high-affinity ligands to protein targets. Such modifications also increase nuclease resistance, which is useful in a range of applications, especially for therapeutics. In this study, we assess the impact of these side chains on plasma pharmacokinetics of modified aptamers conjugated to a 40 kDa polyethylene glycol. We show that clearance from plasma depends on relative hydrophobicity: side chains with a negative cLogP (more hydrophilic) result in slower plasma clearance compared with side chains with a positive cLogP (more hydrophobic). We show that clearance increases with the number of side chains in sequences of ≥28 synthons, but this effect is dramatically diminished in shorter sequences. These results serve as a guide for the design of new therapeutic aptamers with diversity-enhancing side chains.
Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/farmacocinética , Polietilenoglicóis/química , Uracila/química , Animais , Aptâmeros de Nucleotídeos/administração & dosagem , Aptâmeros de Nucleotídeos/sangue , Sequência de Bases , Desenho de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Modelos Lineares , Masculino , Polietilenoglicóis/metabolismo , Ratos , Ratos Sprague-Dawley , Técnica de Seleção de Aptâmeros/métodos , Estatísticas não Paramétricas , Uracila/metabolismoRESUMO
Chemically-modified derivatives of cytidine, bearing a 5-(N-substituted-carboxamide) functional group, are new reagents for use in aptamer discovery via the SELEX process (Systematic Evolution of Ligands by EXponential enrichment). Herein, we disclose a practical synthesis of 5-(N-benzylcarboxamide)-2'-deoxycytidine, and the corresponding 5-(N-1-naphthylmethylcarboxamide)- and 5-(N-3-phenylpropylcarboxamide)-2'-deoxycytidine analogs, as both the suitably-protected 3'-O-cyanoethylphosphoramidite reagents (CEP; gram scale) and the 5'-O-triphosphate reagents (TPP; milligram-scale). The key step in the syntheses is a mild, palladium(0)-catalyzed carboxyamidation of an unprotected 5-iodo-cytidine. Use of the CEP reagents for solid-phase oligonucleotide synthesis was demonstrated and incorporation of the TPP reagents by KOD polymerase in a primer extension assay confirmed the utility of these reagents for SELEX. Finally, the carboxyamidation reaction was also used to prepare the nuclease-resistant sugar-variants: 5-(N-benzylcarboxamide)-2'-O-methyl-cytidine and 5-(N-3-phenylpropylcarboxamide)-2'-deoxy-2'-fluoro-cytidine.
Assuntos
Citidina/síntese química , Oligonucleotídeos/síntese química , Citidina/análogos & derivados , Citidina/química , Oligonucleotídeos/química , Técnicas de Síntese em Fase SólidaRESUMO
OSI-7836 (4'-thio-araC, T-araC) is a nucleoside analogue that shows efficacy against solid tumor xenograft models. We examined how the triphosphates of OSI-7836 (T-araCTP), cytarabine (araCTP), and gemcitabine (dFdCTP) affected the initiation of new DNA strands by the pol alpha primase complex. Whereas dFdCTP very weakly inhibited primase, both T-araCTP and araCTP potently inhibited this enzyme. Primase polymerized T-araCTP and araCTP more readily than its natural substrate, CTP, and incorporation resulted in strong chain termination. dFdCTP, araCTP, and T-araCTP inhibited pol alpha competitively with respect to dCTP. When exogenously added primentemplates were used, pol alpha incorporated all three analogues into DNA, and incorporation caused either weak chain termination (dFdCTP), strong termination (araCTP), or extremely strong termination (T-araC). Furthermore, pol alpha polymerized T-araCTP only nine-fold less well than dCTP, whereas it polymerized araCTP and dFdCTP 24- and 83-fold less well, respectively. The presence of these three analogues in the template strand resulted in significant pausing by pol alpha, although the site and severity of pausing varied between the analogues. During the elongation of primase-synthesized primers, a reaction that is thought to mimic the normal sequence of events during the initiation of new DNA strands, pol alpha polymerized all three compounds. However, incorporation of araCTP and dFdCTP resulted in minimal chain termination, while incorporation of T-araCTP still caused extremely strong termination. The implications of these results with respect to how these compounds affect cells are discussed.
Assuntos
Arabinonucleosídeos/metabolismo , Citarabina/metabolismo , DNA Polimerase I/metabolismo , DNA Primase/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/metabolismo , Polifosfatos/metabolismo , Humanos , Polímeros/metabolismo , GencitabinaRESUMO
Limited chemical diversity of nucleic acid libraries has long been suspected to be a major constraining factor in the overall success of SELEX (Systematic Evolution of Ligands by EXponential enrichment). Despite this constraint, SELEX has enjoyed considerable success over the past quarter of a century as a result of the enormous size of starting libraries and conformational richness of nucleic acids. With judicious introduction of functional groups absent in natural nucleic acids, the "diversity gap" between nucleic acid-based ligands and protein-based ligands can be substantially bridged, to generate a new class of ligands that represent the best of both worlds. We have explored the effect of various functional groups at the 5-position of uracil and found that hydrophobic aromatic side chains have the most profound influence on the success rate of SELEX and allow the identification of ligands with very low dissociation rate constants (named Slow Off-rate Modified Aptamers or SOMAmers). Such modified nucleotides create unique intramolecular motifs and make direct contacts with proteins. Importantly, SOMAmers engage their protein targets with surfaces that have significantly more hydrophobic character compared with conventional aptamers, thereby increasing the range of epitopes that are available for binding. These improvements have enabled us to build a collection of SOMAmers to over 3,000 human proteins encompassing major families such as growth factors, cytokines, enzymes, hormones, and receptors, with additional SOMAmers aimed at pathogen and rodent proteins. Such a large and growing collection of exquisite affinity reagents expands the scope of possible applications in diagnostics and therapeutics.