Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Molecules ; 28(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37375292

RESUMO

CNTs/Fe-BTC composite materials were synthesized with the one-step solvothermal method. MWCNTs and SWCNTs were incorporated in situ during synthesis. The composite materials were characterized by different analytical techniques and used in the CO2-photocatalytic reduction to value-added products and clean fuels. In the incorporation of CNTs into Fe-BTC, better physical-chemical and optical properties were observed compared to Fe-BTC pristine. SEM images showed that CNTs were incorporated into the porous structure of Fe-BTC, indicating the synergy between them. Fe-BTC pristine showed to be selective to ethanol and methanol; although, it was more selective to ethanol. However, the incorporation of small amounts of CNTs into Fe-BTC not only showed higher production rates but changes in the selectivity compared with the Fe-BTC pristine were also observed. It is important to mention that the incorporation of CNTs into MOF Fe-BTC allowed for increasing the mobility of electrons, decreasing the recombination of charge carriers (electron/hole), and increasing the photocatalytic activity. In both reaction systems (batch and continuous), composite materials showed to be selective towards methanol and ethanol; however, in the continuous system, lower production rates were observed due to the decrease in the residence time compared to the batch system. Therefore, these composite materials are very promising systems to convert CO2 to clean fuels that could replace fossil fuels soon.

2.
Molecules ; 27(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36296671

RESUMO

Composite materials based on titania nanoparticles (TiO2 NPs) and three metal-organic frameworks (MOFs) called MIL-53 (Fe) ((Fe (III) (OH) (1,4-BDC)), MILs (Materials Institute Lavoisier)), MIL-100 (Fe) (Fe3O(H2O)2OH(BTC)2), and Fe-BTC (iron-benzenetricarboxylate) with different percentages of TiO2 NPs (0.5, 1, and 2.5% wt.) were synthesized using the solvothermal method and used as photocatalytic materials in the degradation of two dyes (Orange II and Reactive Black 5 (RB5)). The pristine and composite materials were characterized with X-ray diffraction, Raman, UV-Vis and Fourier transform infrared spectroscopy and scanning electron microscopy techniques. The 2.5TiO2/MIL-100 composite material showed the best results for the degradation of both dyes (Reactive Black 5 and Orange II dye, 99% and 99.5% degradation in 105 and 150 min, respectively). The incorporation of TiO2 NPs into MOFs can decrease the recombination of the change carrier in the MOF, increasing the photocatalytic activity of a pristine MOF. Results therefore indicated that the synthesized MOF nanocomposites have good potential for wastewater treatment.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Corantes/química , Ferro/química , Estruturas Metalorgânicas/química
3.
Environ Sci Pollut Res Int ; 31(3): 3745-3753, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091221

RESUMO

The introduction of Cu ions onto ZnO leads to alterations in the electrical, optical, and magnetic characteristics of ZnO. These transformations, in turn, result in heightened photocatalytic activity and enhanced stability when employed in the degradation of both organic and inorganic pollutants. Here, a novel photocatalytic-adsorbent system is developed using zinc oxide (ZnO) nanostructures modified with Cu (II) ions in an aqueous solution containing 40 mg/L of As (III). The system utilizes UV-A light (365 nm) as the irradiation source, and the weight percentage of Cu (II) in the composite varies from 0 to 20%. The experimental results reveal significant adsorption of As (III), ranging from 20 to 50%, depending on the solution's Cu (II) content. Remarkably, the ZnO10%Cu composite exhibits the highest photocatalytic activity, achieving 40% adsorption and complete oxidation of As (III) within 25 min of irradiation. Characterization of the composite after the photocatalytic treatment reveals the effective adsorption of As (V) within its structure. Furthermore, no traces of Cu (II) ions are detected in the solution after the reaction, indicating their successful adsorption onto the ZnO surface as Cu (I) and Cu (II) ions. This research marks a significant advancement in harnessing innovative materials for efficient arsenic removal, offering promising insights into the development of novel photocatalytic-adsorbent systems.


Assuntos
Óxido de Zinco , Óxido de Zinco/química , Adsorção , Raios Ultravioleta , Oxirredução , Íons
4.
Materials (Basel) ; 15(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955219

RESUMO

Graphene-TiO2 composites have been investigated in various photocatalytic reactions showing successful synergy compared to pristine TiO2. In the present work, graphene oxide (GO) was synthesized by the Hummers method and then reduced graphene oxide-TiO2 composites (rGO/TiO2) were obtained by an in situ GO photoreduction route. X-ray diffraction, FTIR, Raman, UV-vis DRS, and photoluminescence were the main characterization techniques. The obtained composites containing 1 and 3 wt.% rGO were evaluated in the cyanide (50 mg/L) oxidation and Au-cyanide complex (300 mg/L) degradation under UV-A light. The composites showed higher photocatalytic activity than TiO2, mainly with the 1% rGO content. Cyanate and gold nanoparticles, deposited on the photocatalyst's surface, were the main byproducts during the photocatalyst assessment. The improved photocatalytic activity of the composites was attributed to a higher rate of electron transfer and a lower rate of charge recombination due to the chemical interaction of rGO with TiO2.

5.
Materials (Basel) ; 14(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925167

RESUMO

The FeBTC metal-organic framework (MOF) incorporated with magnetite is proposed as a novel material to solve water contamination with last generation pollutants. The material was synthesized by in situ solvothermal methods, and Fe3O4 nanoparticles were added during FeBTC MOF synthesis and used in drug adsorption. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and Raman spectroscopy characterized the materials, with N2-physisorption at 77 K. Pseudo-second-order kinetic and Freundlich models were used to describe the adsorption process. The thermodynamic study revealed that the adsorption of three drugs was a feasible, spontaneous exothermic process. The incorporation of magnetite nanoparticles in the FeBTC increased the adsorption capacity of pristine FeBTC. The Fe3O4-FeBTC material showed a maximum adsorption capacity for diclofenac sodium (DCF), then by ibuprofen (IB), and to a lesser extent by naproxen sodium (NS). Additionally, hybridization of the FeBTC with magnetite nanoparticles reinforced the most vulnerable part of the MOF, increasing the stability of its thermal and aqueous media. The electrostatic interaction, H-bonding, and interactions in the open-metal sites played vital roles in the drug adsorption. The sites' competition in the multicomponent mixture's adsorption showed selective adsorption (DCF) and (NS). This work shows how superficial modification with a low-surface-area MOF can achieve significant adsorption results in water pollutants.

6.
Exp Mol Pathol ; 85(2): 129-34, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18582459

RESUMO

Paraoxonase (PON1) enzyme is associated with high-density lipoproteins (HDL) that prevents low-density lipoprotein (LDL) oxidation. PON1Q192R polymorphism is associated with a risk of coronary heart disease and low HDL levels in case-control studies, but the issue is yet unresolved. Mexico has shown an increase in cardiovascular diseases, and some genetic factors may play a role. Our purpose was to evaluate the association between PON1Q192R and L55M polymorphisms and serum lipid profile in a healthy Mexican population. Ninety unrelated male inhabitants from southeastern Mexico with Mayan ascendancy agreed to participate. Demographic characteristics, lifestyle and medical history were obtained by questionnaire. Lipid profile was determined by enzymatic methods, PON1 activity by using paraoxon and phenylacetate and PON1 genotype by real-time PCR. HDL-cholesterol (HDL-C) levels were associated with genotype: 192RR homozygote subjects had lower HDL-C levels than 192QQ homozygotes, and individuals with 192RR and 192QR genotypes had an odds ratio (OR)=7.05 (95% confidence interval (CI)=1.29-38.34) of having HDL-C <60 mg/dL. Individuals with higher paraoxonase activity (>600.18 U/L) had a slight risk (OR=4.9, 95% CI=0.83-22.02) of having HDL-C <60 mg/dL. PON155LM polymorphism was associated with higher LDL-cholesterol. PON1Q192R polymorphism showed a role in modulating lipid profile: 192RR homozygotes showed the least favorable lipoprotein levels.


Assuntos
Arildialquilfosfatase/genética , Arildialquilfosfatase/metabolismo , Etnicidade/genética , Indígenas Norte-Americanos/genética , Polimorfismo Genético , Adulto , Alelos , Arildialquilfosfatase/sangue , HDL-Colesterol/sangue , HDL-Colesterol/genética , Estudos Transversais , Frequência do Gene , Homozigoto , Humanos , Lipídeos/sangue , Masculino , México , Pessoa de Meia-Idade , Estudos Retrospectivos , Triglicerídeos/sangue , Triglicerídeos/genética
7.
Reprod Toxicol ; 25(4): 455-60, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18595656

RESUMO

Extensive use of organophosphorous pesticides (OP) by young men represents a public health problem. Toxicity of OP mainly results in neurotoxicity due to their oxygen analogues (oxons), formed during the OP oxidative activation. OP alter semen quality and sperm chromatin and DNA at different stages of spermatogenesis. Oxons are more toxic than the parent compounds; however, their toxicity to spermatogenic cells has not been reported. We evaluated sperm DNA damage by several OP compounds and their oxons in human spermatozoa from healthy volunteers incubated with 50-750 microM of methyl-parathion (MePA), methyl-paraoxon (MePO), chlorpyrifos (CPF), chlorpyrifos-oxon (CPO), diazinon (DZN) or diazoxon (DZO). All concentrations were not cytotoxic (evaluated by eosin-Y exclusion), except 750 microM MePO. Oxons were 15% to 10 times more toxic to sperm DNA (evaluated by the SCSA parameter, %DFI) than their corresponding parent compounds, at the following order: MePO>CPO=MePA>CPF>DZO>DZN, suggesting that oxon metabolites participate in OP sperm genotoxicity.


Assuntos
Inibidores da Colinesterase/toxicidade , Cromatina/efeitos dos fármacos , Dano ao DNA , Inseticidas/toxicidade , Compostos Organotiofosforados/toxicidade , Espermatozoides/efeitos dos fármacos , Células Cultivadas , Humanos , Masculino , Espermatozoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA